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FOREWORD

This volume contains 12 papers prepared by agencies working

in trajectory analysis and guidance theory with the Computer

Research Laboratory of the NASA Electronics Research Center.

The papers are concerned with special studies performed in

guidance theory, optimization theory, numerical methods, and

celestial mechanics. They include:

i. An extension of the classical theory of calculus of

variations to include varying number and types of

constraints;

2. A development of theory for relaxed controls for

integral equations;

3. A generalization of the above case to one where the

class of controls may, but need not, consist of

relaxed controls;

4. An application of Hamilton-Jacobi theory to a planar

trajectory optimization problem;

5. A presentation of a method of obtaining a complete

integral of the Hamilton-Jacobi equation associated with

a dynamical system in which constants of motion are

known;

6. A method of solving two-point boundary-value problems

by an offset vector iterstion method;

7. A iinearized guidance procedure based on minimum

impulses for space trajectories;

8. A set of equations for computing orbits in closed form

using the spheroidal method of calculation; in particular,

they are good for polar and near-polar orbits;

9. A procedure for developing expansion formulas in

canonical transformation in which the form is developed

for speedy computerized symbolic manipulation;

i0. A formal solution of the n-body problem in Taylor

series;

ii. A paper on the long period behavior of a close lunar

orbiter;

iii



FOREWORD

12. A presentation of non-linear resonance theory with

an application.

These papers cover work performed from 1 October 1967 to

1 February 1969. This work was supervised by personnel of the

Computer Research Laboratory.
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SUMMARY

This volume contains technical papers on NASA-

sponsored studies in the areas of trajectory analysis

and guidance theory. These papers cover the period

beginning 1 October 1967 and ending 1 October 1968.

The technical supervision of this work is under the

personnel of the Computer Research Laboratory at NASA-ERC.
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INTRODUCTION

By William E. Miner

Chief, Computation Theory

and Techniques Branch

NASA Electronics Research Center

This document contains 12 technical papers covering work

sponsored by the Computer Research Laboratory of the NASA

Electronics Research Center in the fields of guidance theory,

optimization theory, numerical methods, and celestial mechanics.

The following table lists the authors, contributing

institutions, and the disciplines of each paper.

Author

J. L. Linnstaedter

J. Warga*

S. K. Lakhanpal

P. M. Fitzpatrick/

J. E. Cochran

C. F. Price

T. N. Edelbaum

Institution/Company

Arkansas State Univ.

Northeastern Univ.

Vanderbilt Univ.

Auburn Univ.

MIT

AMA

Discipline

Optimization Theory

Optimization Theory

Optimization Theory

Optimization Theory

Numerical Methods

Guidance Theory

J. P. Vinti

A. A. Kamel

P. Sconzo/

D. Valenzuela

R. Dasenbrock

W. T. Kyner

MIT

Stanford Univ.

IBM

Stanford Univ.

Univ. of So. Calif.

Celestial Mechanics

Celestial Mechanics

Celestial Mechanics

Celestial Mechanics

Celestial Mechanics

*Two papers

The above characterization is made only in a gencral way.

Work done in optimization theory may have application in

trajectory analysis, control theory, _uidance theory, and/or

celestial mechanics. Work done in celestial mechanics often

overlaps into the area of optimization theory with potential

applications to that theory. Numerical methods find usages

in many disciplines.



INTRODUCTION

Synopses of the individual papers are presented below:

Paper No. 1

The first paper, written by J. L. Linnstaedter of Arkansas

State University, presents a generalized, multistage problem of

Bolza in the calculus of variations. The differential con-

straints and the number of differential constraints may be

different for each of the various stages. The stages are allowed

to degenerate. Discontinuities at staging points are permitted.

The paper presents a multiplier rule and analogues of the

Weierstrass and Clebsch conditions.

Paper No. 2

The second paper, written by J. Warga of Northeastern

University, covers relaxed controls for functional equations

where the functional values of the state are considered as

known functions of states and controls. These equations are

constrained by known functions of the states and controls, and a

function of the controls and states is minimized. The controls

are embedded in a set of "relaxed controls" so that the exist-

ence of a relaxed minimizing point and an approximate solution

may be obtained under mild assumptions. Theorem 2.1 presents

the results described above. The proof is presented in

paragraph 5. The paper presents theorems based on the special

case of a control problem defined by a Uryson-type integral

equation.

Paper No. 3

The third paper, also written by J. Warga of Northeastern

University, is a generalization of the second paper in this

compilation. The existence of an original (unrelaxed) control

is assumed. It is shown that the generalizations of the

Weierstrass E-condition and the transversality conditions

presented in the second paper remain essentially valid for an

original control. The generalization is in the sense that the

classof controls may, but need not, consist of relaxed controls.
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Paper No. 4

The fourth paper, written by S. K. Lakhanpal of Vanderbilt

University, presents an application of Hamilton-Jacobi theory

to a planar thrusting trajectory in a centralforce field. The

paper presents the background theory needed to formulate and

solve the "base" problem (thrust is equal to zero) and applies

it in the problem using two different methods. The complete

integral is obtained by Lagrange's linear equation in the first

application and by Jacobi's method in the second application.

In both applications Hamilton's equations are presented in the

transformed variables.

Paper No. 5

The fifth paper, written by P. M. Fitzpatrick and

J. E. Cochran of Auburn University, covers the use of Liouville's

theorem for deriving a generating function for transformations

of a Hamiltonian system. Methods are developed for making

transformations which make use of the known constants of

integration by putting the variables and constants in the form

so that Liouville's theorem may be applied. The methods are

then applied to two examples. The examples are the orbit in

the central force field and free motion of a triaxial rigid

body.

Paper No. 6

The sixth paper, written by C. F. Price of Massachusetts

Institute of Technology, presents an offset vector iteration

method for solving two-point, boundary-value problems along

with a modification. The method depends on an "approximate

solution". It has the distinct advantage of moving toward

the desired solution with each pass through the ordinary

differential equations of motion and, therefore, if the

"approximate solution" gives a solution sufficiently near the

desired end conditions, it may converge on the end conditions

with far fewer passes through the ordinary differential

equations than higher order methods. It is pointed out that

the information generated may be stored for use by higher

order iteration procedures, should this be desirable.
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Paper No. 7

The seventh paper, written by T. N. Edelbaum of Analytical

Mechanics Associates, Inc., presents a linearized guidance

procedure for a space trajectory. The space trajectory is a

minimum-fuel trajectory and the thrusting is impulsive. The

guidance corrections are impulsive and are designed to be

valid in the neighborhood of the nominal trajectory. This

paper covers three different problems; (i) the time-open

rendezvous case, (2) the time-open orbit transfer, and

(3) the time-open orbit transfer where one or more finite

impulses are tangent to the velocity vector.

Paper No. 8

The eighth paper written by J. P. Vinti of Massachusetts

Institute of Technology presents a set of equations for

computing orbits in closed form using the spheroidal method

(Vinti potential) of calculation. The equations are good in

the general case and in particular they are good for polar

and near polar orbits. The paper develops the changes in the

known equations so that near the polar orbits division by

differences of near equal quantities (near zero) is avoided.

Thus, the numerical accuracy is enhanced. The procedure trans-

forms the equations so that an explicit parameter for the

right ascension does not appear. This is the troublesome

variable.

Paper No. 9

The ninth paper, written by A. A. Kamel of Stanford

University, presents procedures for developing expansion

formulae in canonical transformations depending on a small

parameter where the implementation of such perturbation theory

is put in a form for speedy computerized symbolic manipulation.

"Deprits' equations" are developed using a linear operator

called Lie derivative generated by W, where the

generating function W has a special form. Recursive relation-

ships of the transformed variables and Hamiltonian are then

developed. These recursive relationships are then modified

by the introduction of intermediate functions to increase the

speed of computerized symbolic manipulations.
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Paper No. i0

The tenth paper, written by P. Sconzo and D. Valenzuela

of International Business Machines' Cambridge Advanced Space

Systems Department, p_esents a formal solution of the n-body

problem. This solution is a Taylor series in time for each of

the 3n variables with coefficients generated recursively from

the 6n initial conditions. It is obtained by a careful selection

of intermediate variables and by the use of PL/I FORMAC.

Paper No. ii

The eleventh paper, written by R. Dasenbrock of

Stanford University, is on the long period behavior of a close

lunar orbiter. A reference frame is chosen which is rotating

with the moon with the x-axis in the equatorial plane determined

by Cassini's law and the z-axis along the axis of rotation of

the moon. The Hamiltonian is written in this rotating system in

mixed Keplerian and Delaunay variables. The parts of the

Hamiltonian are then ordered and integration of the equations

is obtained with the short period terms averaged out by a

series of canonical transformations. It is pointed out that

there are Ii critical inclinations. Near these inclinations

the von Zeipel method, which was used, fails. The case of the

polar orbit is discussed separately. Phase plane contours of

H "and h" with constant F** are presented and discussed. This

work is a continuation of earlier work done by J. Vagners

documented in NASA-ERC PM-67-21, pp. 213-228.

Paper No. 12

The twelth paper, written by W. T. Kyner of the University

of Southern California, contains an exposition of the theory of

non-linear resonance followed by application to the J2
perturbations on the orbit of a 24-hour synchronous sa_ellite.

The expository portion is based on lectures delivered at the

1968 Summer Institute of Dynamic_Astronomy. In the application,

it is shown that the longitude on a synchronous satellite

satisfies a pendulum equation on the average. The validity of

the pendulum model is restricted to time intervals of the

order of i//J22.
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Two internal publications authored or co-authored by

members of the sponsoring laboratory and in the subject

technical fields have appeared since the last compilation.

These are listed below with their summaries.

Miner, William E.: The Equations of Motion for

Optimized Propelled Flight Expressed in Delaunay

and Poincare Variables and Modifications of These

Variables. NASA TN D-4478, May 1968.

SUMMARY

This document presents methods for developing the ordinary

differential equations (o.d.e.) of motion in canonical form

equivalent to the forms of Delaunay and Poineare. It also

presents modifications to these forms so that three variables,

which are constants of motion, result while the forms remain

canonical.

The equations of motion are for a vehicle propelled by

constant thrust magnitude with a constant mass flow rate.

The vehicle is moving in a central force field. The trajectories

are optimum in the sense of classical calculus of variations in

a neighborhood definable by the boundary conditions of the

specific problem. Specific problems are not discussed in

this document.

The value of the document lies in two major areas:

1.

2.

The possible economics in numerical calculations which

may result from using these ordinary differential

equations, and

The application of the general perturbation theory of

classical celestial mechanics to approximate solutions

of these ordinary differential equations.

This document has been written to record the results of the

investigation and was not meant to be a tutorial treatment of

the subject. For such treatment, the references listed below

are recommended by the author:

i. Bliss, G. A.: Lectures on the Calculus of Variations.

University of Chicago Press, Chicago, Ill., 1961.

2. Goldstein, H. : Classical Mechanics. Addison-Wesley

Publishing Co., Inc., Cambridge, Mass., March 1956.



I NTRODUCTION

3. Ford, L. R.: Differential Equations. McGraw-Hill Book

Co., Inc., N. Y., 1933.

4. Smart, W. M.: Celestial Mechanics. Longmans, Green,

and Co., Ltd., London, 1953.

Hoelker, R. F., and Winston, B. P.: A Comparison of a

Class of Earth-Moon Orbits with a Class of Rotating

Kepler Orbits. NASA TN D-4903, November 1968.

SUMMARY

In two concurrent series of graphs, a class of orbits in

the Earth-Moon (E-M) field and a class of Kepler orbits in

rotating coordinates are depicted and compared.

A general discussion of characteristics of rotating Kepler

orbits is included.

The model used for the E-M orbits is that of the restricted

problem of thr_bodies. The orbits of the class depicted

originate at the E-M line, half of the E-M distance beyond the

moon with velocity orthogonal to the E-M line within the E-M

plane.



A GENERALIZED MULTI STAGE PROBLEMOF

BOLZA IN THECALCULUS OFVARIATIONS, I

By J, L. Linnstaedter

Associate Professor of Mathematics

Arkansas State University

State University, Arkansas



AGV_NERALIZEDMULTISTAGEPROBLEMOF
BOLZAINTEECALCULUSOFVARIATIONS,I_

ByJ. L. Linnstaedter
AssociateProfessorof Mathematics

ArkansasStateUniversity
StateUniversity,Arkansas

SUM_RY

Theproblemis to find in aclassof admissiblearcs,satisfying
certainmultistagedifferentialequationsof constraintandendand
intermediatepointconstraints,onewhichminimizesaBolzatype
expression.Thedifferentialconstraintsmaybedifferentanddifferent
in numberontheseparatestages.Admissiblearcsarecontinuousand

piece-wisesmoothin eachstagebutmaybeactuallydiscontinuousat
stageboundaries.Thenumberof stagesis boundedbutotherwisenot
predetermined,sinceanystagewill beallowedto degenerateto anull
status. Thisis ageneralizationof theDenbowmultistageextensionof
theProblemof Bolza.Appropriateimbeddingtheorems,a multiplierrule,
andanaloguesof the_VeierstrassandClebschconditionsareobtained.

Thetheoryof thesecondvariation,theaccessoryminimumproblem,
andconjugatepointconditionshavebeendevelopedandwill bepresented
in a subsequentpaper.

INTRODUCTION

Thisstudywasmotivatedbythemultistagecharacterof manyspace-
flight optimizationproblems.Theproblemtreatedis a generalization
of theDenbowmultistageextensionof theBolzaproblem[reference3].

_Thisworkwaslargelydoneat VanderbiltUniversityonRASAResearch
GrantNGR43-002-O15.Theauthorwishesto thankDr.M.G.Boycefor
manyhelpfuldiscussionsduringtheperformanceof this research.
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MULTI STAGE PROBLEMOF BOLZA

It is a generalization in the sense that the differential constraints

may be different arid different in number on the various stages, stages

are allowed to degenerate, and discontinuities at staging points are

permitted. The oroblem is approached directly as a multistage problem

using extensions of the methods used on the Bolza problem [l_. This

approach avoi,_s the transfo*'mation to a Bolza problem used by Denbow [3i.

Certain multistage control problems can be included in this problem

by usin_ techniques of Hestenese [4_ and Valentine [6j as has been shown

for a simpler case by Boyce and Linnstaeater [2j. The applicability of

multistage variational problems i_ best illustratea in a recent p_per by

Miner and Andrus [SJ.

'Three imbedding theorems, a multiplier rule, an_ analogues of the

_eierstrass and Clebsch con aitions are given. The first two imbedding

theorems ignore the end and intermediate conditions and consiaer compar-

ison arcs satisfying only the differential constraints. The necessary

conditions given reduce to those for the Bolza problem whenever the

problem degenerates to one stage.

FORMULATION CF THE PROBL_

The problem is to finu in a class ,_f admissible arcs

Yi(X); x ° _ x I _ ... _ Xp," x ¢ [Xo, Xpj; i = i, 2, ..., n;

satisf2ing uifferential equations of constraint

a (x, y, yv) = O; _ i, 2, < n; a = I, 2, ..., p;
_ = ..., m a

x E Ix a - i' Xa];

and end and intermeGiate point conaitions

- + +

J [Xo, x I ..... Xp, Y(Xo) , y(x I ), y(x I ), .... y(Xp_l) , y(Xp)j = O;

= l, 2, ..., q _ (2n + 1)p + l;

12



MULTI STAGE PROBLEMOF BOLZA

one which minimizes a sum of the form
x

+ P aa v

J = g[x 0 ..... Xp,y(Xo),Y(X_),y(x I) .... y(Xp)j + _ f f (x,y,y)dx.

a=l Xa. 1

In the above statement and hereafter, y denotes the set (yl,...,yn),

and primes inaicate differentiation with respect to x. Require Yi(X) to

be continuous for x e [Xo, Xpj - (Xl, x2, ..., Xp_l) and yi ( ) to be

piecewise continuous for x e [Xo, Xp], where i = i, 2, ..., n. The

finite non-decreasing set of points (Xo, Xl, ..., Xp) will be called a

.. not fixed
set of partition or staging _oints. The Xo, Xl, ., Xp are

but are to be determined by the minimization requirement. The left and

' at points of discontinuity are assumed to be
right limits of Yi and Yi

defined and finite. Variables occuring as subscripts denote partial

derivatives and repeated indices in a product indicate sunwlation. Let R

be an open connected set of 2n + 1 dimensional (x, y, y' ) space with

a

_P' fa having continuous third order partial derivatives in R.

!Ia 1Furthermore, let the matrix _vv h have rank m in R. Let S be an
! _iH a

open set of 2np + p + 1 dimensional

+

(xo, xI.....Xp,yCXo),yCx[),yCx[).....yCX__l),y(xp_ll,y(xp))

space, with J , g having continuous third order partial derivatives in

S. Moreover, require the matrix

_x I _Xp

to have rank q in S.

A set (x, y, y') is an admissible set if it is contained in R. An

aamissible subarc C a is a set of functions (YI' Y2' "''' Yn )'

x s [Xa.l, x a] with (x, y, yV) an admissible set and such that Yi is

____ ......... _ ..T _v_t .......... [_'a-l' "_a_

13
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i, i = i, 2,...,n. An admissible arc C is a partition set (Xo,Xl,...,Xp)

together with a set of admissible subarcs G a, a = i, 2, ..., p, such

that the set (Xo, ..., Xp, Y(Xo) , Y(Xl) , y(x_), ..., y(Xp)) s S. On

each admissible arc, _;, fa j, g, j are assumed to he defined.

ADMISSIBLE FAMILIES A_D VARIATIONS

Suppose there exists an admissible arc E satisfying _a = j = O. If

there are no other arcs satisfying _; = J = O with which to compare E

then the problem is trivial. In order to establish that the problem is

not trivial, we will give conditions that an admissible arc E can be

imbedded in a family of comparison arcs. This will be the content of

Theorems l, 2, and 4. Theorem 4 gives conditions that guarantee other

arcs in a neighborhood of E that satisfy _ = O and J = O while Theorems

1 and 2 guarantee other arcs near E satisfying only _a = O. First, we

need the following definitions, the first two being essentially the

same as are given in Bliss and the third one is a multistage extension

of the definition of admissible family given in Bliss [1, 194-1953.

A one-parameter family of arcs Yi(X, h); x _ < x < x", I b I _ _; is an

elementar_ family if and only if y[(x, b) exist and Yi(X, b) have con-

tinuous first derivatives with respect to h in a neighborhood of points

(x, b) containing x' < x < x", I b I _ e. Two elementary families are

said to be _ if and only if they are defined on adjacent intervals

and are continuous across the common end point. These definitions hold

between partition points but not necessarily across partition points. A

family of arcs will be called an admissible famill if and only if Yi(x,b)

exist for Xo(b) < x < Xp(b), I b I < e; Xo(b), xi(b) , .... Xp(b) have

continuous first derivatives with respect to b in the region I b I < E;

14
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for each a there is a finite sequence of intervals [x', x"], [x",x'''],

....ix(k-l)x(k)], for k depending on a such that x I <Xa.l(b) < x" and

x (k-l) < Xa(b) < x(k); Yi(X, b) for x g [Xa.l, x a] is a part of a finite

sequence of adjacent elementary families belonging to the sequence of

intervals.

The notation to be used for differentials of an admissible family

is as follows:

dx 0 = Xobdb, dx I = Xlhdb , ..., dXp = Xpbdb ;

T

dy i = y[dx + 6y i where 5y i = Yibdb and Yi = Yix"

The set of variations of the family along the arc E is the set

]o' #l' .... 9p, _i(x) defined by

dx ° = Xob(O) db = _odb ..... dxp = Xpb(O) db = }pdb;

5y i = Yib(X, O) db = _i(x) db-

The _o' _i ..... _p are constants and the _i(x) are continuous and

have piecewise continuous derivatives between partition points of E.

Every set _o' }I' "''' _p' _i (x) with these properties is called a

set of admissible variations along E.

If we require the arcs of an admissible family to satisfy _: = O,

then the variations _i(x) along E contained in the family for b = 0

satisfy

a and a

where the arguments of _Yi _y[ are (x, y(x, 0), y'(x, O))

belonging to E. The equations 8 = 0 are called the _ns of

variation alon_ E. In these equations repeated subscripts indicate

15
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summation. If _ is specified then the coefficients of _i and _ are

fixed and independent of any family.

the equations of variation o__n _ of t_.__eend and intermediate point

conditions will be given by

$_ = J_x ° _o + "'" + Jgxp ]p + J_xYi(Xo) _i(Xo ) + JgYi(X_) _i(Xl )" +

J + + J Yi(Xp )_Yi(Xl) _i(Xl ) + ... + _i(Xp)

where the arguments of the coefficients of the variations are the end

and intermediate values of Z.

I_EDDING TH_)REMS

_e can now stste the first imbedding theorem. The proof of this

theorem is a specialization of the proof of _heorem 2 and for this

reason it ia omitted.

Theorem i. If an a_;aissible arc Z satisfies the equation _ = O, and

if _o' J1 ..... }_, hi(x) isa setofadmissiblevariations

satisfying the equations of variation _ _ = O on E t then there is a

one-parameter admissible family Yi(X, b) of arcs containing E, for the

par_ueter value b = O, sstisfying the equations _; = O, and having the

set }o' }i' "''' _p, _i(x) as the variations of the f_nily along E.

The extension of this theorem to an s-parameter family is the

content of the following theorem.

'l_%eorem 2. If an admissible arc E satisfies the equations _ = O and

if _oa' _ i_' "'" _pc' nio (x) ' (o = i, 2, ..., s) are s sets of

admissible variationa satisfying the equations of variation _ = 0

16



MULTI STAGE PROBLEM OF BOLZA

along E, then there is an admissible s-parameter family Yi(X,bl,b2,...bs)

of arcs containing E for the parameter values b e = 0 (_ = l, 2, ..., s),

a

satisfying the equations _ = O, and having for each a = l, ..., s the

set 9oe' # la' "''' _pa' _iu (x) as the variations of the family

along E with respect to the parameter b a-

Proof. Let E be an admissible arc satisfying _; = O, and let

_oo' _io' "'" _po' _io (x) , (o = i, 2, ..., s) be s sets of

admissible variations satisfying the equations of variations _; = O

along E. Consider any arbitrary non-degenerate stage a with associated

partition interval [Xa_l, Xa3. Extend the system of equations _; (x,y,y')=

O by introducing new equations z 7 = _¢, (¥ = m a + l, ..., n), where the

functions _ (x,y,y') are chosen so as to have continuous partial

derivatiyes of at least third order in a neighborhood of the values

(x,y,y') belonging to E a and such that I_;y_l # O along E a,

Y = l, 2, ..., ma, ma+l , ..., n. The zy are new variables, and E a is

the subaro of E associated with the a stage. The equations _ = O,

a (x) belonging to E a when Yi(X) defining_¥ = z 7 determine functions Zy

E a are substituted in these equations. The z (x) are continuous except
Y

possibly at corners of E a. The equations of variations are

a a

where the functions of_ 7 are variations of z 7 associated with the

subarc E a and the variations _i" The _¥ are dependent on _i and _,

so /iu corresponds to _iu' a = l, 2, ..., a. Furthermore, for each

a, /ia(x) is continuous except possibly at corners of E a or

discontinuities of '_ia(x).

17



MULTI STAGEPROBLEM OF BOLZA

The extended system of differential equations has solutions

Yi' = Mi(x' y' z) with MI having continuous partial derivatives of at

least third order in a neighborhood of the values (x, y, z) belonging

to E a, since _;, _ have continuous third order partials. Let x' be

the first value of x following Xa_ 1 defining a corner of E a or a

discontinuity of _[c(x), or let x _ = Xa if there are no corners on Ea

or discontinuities in n_G(x). The functions zy, fyc as defined on

[Xa_l, x T ] can be extended so that they are continuous on a slightly

larger interval. The right members of the equations

Yl " Mi(x'Yi'_y(X)+ bo _a(x))

are continuous in x, Yl' "''' Yn' bl' ..., b s and have continuous

third partial derivatives with respect to the variables yl,...,Yn,bl,

..., b s in a neighborhood of the values x, YI' "''' Yn' bl=O'''" bs=O

belonging to E_ where _ is the subarc of Ea associated with

[Xa_l, x'3. Solutions

Yi = Yi (x' x, y, bl, ..., b s)

exist for initial point (x, _i' "''' Yn ) with Yi' Y[I continuous and

having continuous partial derivatives of at least third order with

respect to the arguments Yi' bo in a neighborhood of the sets

(x, _, Yi' bo) belonging to E a.

The functions

Yi=YiIx'Xa-l'yi(x_-I) ÷ ho_io(X_-l)'bo]=Yi(x'bo)
a

define an elementary family satisfying the equations _ = O on an

interval including [Xa_l, x'].

The functions Yi(X, b ) have at Xa_ 1 the initial values

18
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+ b ) = Yi[Xa_l, + + + b O]Yi(Xs_l , Xa_ I, Yi(Xa_l ) bo_io(Xa_l),

+

= Yi(Xa_l) + bonic(Xa_l)"

Furthermore, Yib (x, O) along _i have at x = Xa_ 1 the initial values
o

nio(X__l) and Yi(X, b o) satisfies _ = O, _ = zy(x) + b ° fvo(X).

a (x, O) = _io(x) because of the uniqueness ofThus along El, Yib
o

solutions with initial values _io(X__l).

This determines an s-parameter elementary family on the interval

[Xa.I, x']_ti_fyi_ _ = O _d havingYib (x,O) = _io(X)along_.

Let x" be the next value of x following x' on [Xa_l, Xa3 defining a

corner of Ka or a discontinuity of __(x),u or x a if _ has no other

corners and _a(x) have no other discontinuities. Repeating the

preceding arguments produces an s-parameter elementary family on

[x T , x"3 which is adjacent to the elementary family on [Xa_l, x'3 and

satisfying _; = O with Yib (x, O) = hi(x) on E_ (subarc for [_, x"3).
o

Continuing this process for a finite number of times gives a finite

sequence of adjacent s-parameter elementary families which together

give an s-parameter fa_ly of arcs in R satisfying the properties of

the theorem for the a stage with

Xa-l(b_) = Xa-i + ba Ja-lo' Xa(bc) = Xa + bs _ so"

By identifying the parameters of each stage with those of adjacent

stages, an s-parameter family satisfyin_ t_e requirements of the theorem

is obtained.

THE FIRST VARIATION

Let an admissible arc E be imbedded in a one-parameter family

19
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Yi(X, b) _vith E determined by Yi(X, 0). Z_aluate J along the family so

that J is a function of the para_,eter b as follows:

J(b) = g[xo(b),Xl (b) ..... Xp(b), Yi(Xo(b), b),Yi(Xl(b) , b) ..... Yi(Xp(b) ,b)]

Xa(b)P

+ _ / fa(x, Y(X, b), Y'(x, b)) dx.

a=l Xa_l(b)

Taking the differential of J, we have

x x

_' _ ,
6 _i)dx.dJ = dg + fadx + (fa 5?i + fYl

a=l Xa_ _ a=l a-I Yi

The first variation of J along E is 3 where dJ = Jdb with dJ evaluated

along E. 7_xplicitly,

a x

, = ^ + + +f.,_ )dx

a=l a-i - Xa-I Yi Ji x

where the arguments of fa f_i'y fa,yi are those determining E and

[y'(x)_ +
=gxo _o +gxi _l +''" +g_p /p +gyi(%) • o o _i(Xo)]

g + ' + +
+gyi_xDEyI_ fl * _i_xD_÷ yi_xl_EYi_l__l +_i_ _j

+ ... + gyiCxp ) [ylCxp ) }p + TliCXp)].

Define F a as follows:

Fa(x, y, y', I ) = /o fa + Aa _:

a

with _o a constant, _a a function of x for each a, and _a are functions

a a

_, _y described earlier. Since

20



MULTI STAGE PROBLEMOF BOLZA

it can be added to the integrand of lo _ without changing the integrand's

value. Thus

a x

_og(_ ,n) = _o _ + a__l _o far + ERa n.+Fa,_!__jy]ax.= Yi z Yi I .

a-1 Xa_ 1

To prove the multiplier rule, we need the following lemma.

Lemma 1. Let x ¢ [Xa_l, Xa_ and Xa. 1 _ x a. If _o' ci (i = i, 2,...,n)

are arbitrarily selected constants then there are multipliers _a(x),

determined uniquely by

x
_ =f_a-I Yi _+ ci'

which are continuous except possibly at corners of Ea.

Proof. Following procedures of Bliss for the Bolza problem, define

vi = = ]o + _a _ay_"

Now consider

=
dvi/dx = F_ i 1o fa

Yi

and

vi(Xa_ I) = C i.

a

+ la _a Yi

Further notice that tae first system of equations can be solved for

la(X) in terms of _o and vi(x). Substituting these in the system of

differential equations gives

dvi/dx = Aia Va + _o Bi"

The coefficients Aia , B i are continuous functions of x between corners

of _ . The existence of continuous (between corners) solutions v.(x)
1

of this system with initial conditions vi(Xa_ l) = c i is equivalent to
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findinM continuous functions l.(x) (between corners) for the integral
i

equations of the lemma. The system

dvi/dx = A. v + 4o Bi, =la _ vi(Xa-l) c i

is a linear first order system of differenti_l equations. Let x'be the

first corner of E a following Xa_ I. The initial condition then for the

solution between corners defined by x' ana x" is simply vi(x').

Continuing this it is clear that the system has continuous solutions

vi(x) (between corners) and hence there are continuous solutions l(x)

(between corners) determined by the integral equations of the lemma.

he uniqueness of solutions to the system of _ifferential equations

through a fixed point guarantees the uniqueness of the multipliers

]a(x). The set lo , vi(x) , and consequently the set Io , la(x) , do

not vanish simultaneously at a point unless they are a]l identically

zero.

Negetareduced form for the first variation by using integration

by carts and the integral equations of this lem_la. Hence, for all

admissible variations _o' 51 .... ' _p, _i(x) satisfying the

_a = O, we
equations

have

a a

a___Pl _^ _ _a i a 1= + + ry[ _ioj(} , _) Io fa_ a-i °g
= a=l -

x

- _y]y ax.
a=l Xa_ 1

MULTIPLI ?_R RULZ

We now proceed to state and prove a multiplier rule, or first

necessary condition.
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'±_eorem 3. An admissible arc E, defined on an interval [Xo, Xp] is

said to satisfy the multiplier rule if there exist constants _o' e ,

not all zero, and a set of functions

Fa(x, y, y',A) = Io fa + R_(x) _;, a = 1 .... , p,

with multipliers _(x) continuous on [Xo, Xp] except possibly at

partition points and corners of E, such that the equations

x

f °i'a o,  Xa_l,
Xa- I

are satisfied on E and the equations

a p laP  ¢-Fy iy;]dx %
= a-i _ " a-i

= O, J = 0
+ l ° dg + • d J

hold for end and intermediate points of E for every choice of differentials

+

dXo, dXl, ..., dXp, dYi(Xo), dYi(X[), dYi(Xl), ..., dYi(Xp). For an arc

E satisfying the multiplier rule the multipliers Io, _(x) do not

vanish simultaneously at any point of [Xo, Xp], and right and left limits

are defined at partition points and corners of E. Every minimizing arc

E must satisfy the multiplier rule.

Proof. Let E be a minimizing arc for this problem. Let }0_' }i_'

..., _p_, _i (x) be q + 1 sets Of admissible variations all of which

_a = 0 along E, _ = O, i, ..., q.satisfy the equations of variations

By Theorem 2, there is a (q + i) - parameter admissible family of arcs

Yi (x, bo, bl, ..°, bq)

containing E for b = O, satisfying _ = O, and having /o_' /i_' "'''
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_p_, _i (x) as its variations with respect to b along E. The

functions J, J become functions of the parameters wnen the functions

definin_ the (q + l) - ad,lissible f_nily are substituted in them. i_e

equations

J(b o, bl, ..., bq) = J(O, ..., O) + u,

Jg(bo, b l, ..., bq) = 0

= b I = = 0 corresponding to thehave the solution b ° = ... = bq u

minimizing arc L. We wish to show the determinant

_J ... _J

_b _b
o q

aJ aJ

ab """ _b
o q

= = = O. £uppose the contrary, thenis zero for b ° b I .... bq u =

from existence theorems for implicit func_ons the above equations have

unique solutions b z (u) continuous near u = 0 and havinz initial values

b (0) = O. But for negative values of u, the value of J on E is larger

than the value of J along some admissible arc corresponaing to bz(u)

(for negative u). ibis contradicts the fact that J takes on its

minimum value along Z. Hence the determinant is zero for all choices

of ti_e variations an_ _ake_ t:xe form

3( }co' _io ) "'" 3( ]cq' _iq )

_( _co' nio) "'" $;( foq' _iq )
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where c = O, i, ..., p and i = l, ..., n and _ = l, ..., q.

":e notice that this determinant is q + 1 by q + i. Let t < q + 1

be the maximum rank attainable for this determinant for sets of

admissible variations _'o_' _i_' "''' _p_' _i_ (x) satisfying

_ = 0 on 5. Furthermore, let this set of a_Amissible variations be

a set for which this rank is attaineq. Thus, there exist constants

_o' e (*lot all zero) sati_f:_in! the following system of equations:

_o$( Ico' _iio)+ e _< _co' _io) = o,

°..°.°,,.o

%3( _'cq'_i_) _ e _( _o_, _,iq)= o.

1';ow, with these constants the equation

4 _(fc' _i) + e _(fc, _i) : o

munt be satisfied for every set of _dm[ssible variations Jo' _i i °,.i

_pl _i (_) satisfying the equations of variation _ = O along _3. If

this were not the case then there would exist a set of admissible

varia<ion ..... s chthat

Ne notice then tqat th_ q + 1 by q + 2 matrix

I 2( ;CO' _io ) .., 2( fcq' _iq ) $< I _C_' _'_)

has rank t + 1 since otaerwise

1o2( I*' n"") + e _( _*, n _') = O.
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But this would contradict t being the maximum rank.

Substituting the simplified ver_ion io2 given just oefore the

statement of the multiplier rule in AoJ + e _ = O, we get

a a

a=l a-i a=l Yi a-i

x

a=l

Xa- 1

The expressions not under the integrals are linear in ]o' _ i'

.... ]p, _i(Xo), _i(Xl), _i(x_), ..., _i(Xp). Consider the coefficients

of _i(Xo), namely

= F__ (Xo,y(Xo),y,(Xo),_(Xo_+_ogyi(x o) e J_Yi(Xo)'

and recall Lemma i. Since we can select c I
1

= F , (Xo,Y(Xo),y' (Xo),_(Xo))
i Yi

arbitrarily, we can make this coefficient vanish by simply setting

1

c i = - 4 0 gyi(Xo ) + e JiiYi(Xo ) . Similar remarl, s can be made concerning

+_

the vanishing of the coefficients of r,i(XlJ , _i(X2)' _i(X;) ..... _i(X;-I ).

The remaining expressions must vanish for every arbitrarily selected set

¢o' :i..... :p' ni(xl),ni(x_)..... ni(Xp-l),ni(_p),Jy (×1

By choosing -_0 ..... _p = _i(Xl ) = "'" = _i(Xp ) = 0 we have

x

a_= Iv I x ax = o.
-i

Now the IT, Y = m a + i, ..., n must vanish identically since the

/y can be arbitrarily selected. Similar choosing will show that

the coefficients of :o' -_l' "''' _p' _i(Xl )' _i(x2 )' .... _i(Xp )
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a
vanish. For _; = O, F a = 2o f and we can summarize b_ saying that

• .., , _i(Xl ), ...,the coefficients of _o' Jp' _i(Xo )' _i(x[ ) +

_i(Xp) vanish in the following equation:

=
a-I a-i

=0.

Since dx ° = _odb ..... d×p = 9p db, dYi(X O) = Yi(Xo)dX 0 + _i(Xo)db,

• ÷ +

dYi(Xp) = Yi(Xp)dXp + _i(xp)db, this last equation can be transformed

to the form given in the theorem. This together with LemL_Ja 1 completes

the proof of the multiplier rule.

COROLLARIES TO _LTIPLIER RULE

There are three i:r,portant corollaries to this tneorem.

Gorollar_ i. At each point between partition points of an a_missible

arc E satisfying

x

= / a [Xa. 1

a

O, _Y['_ d _Yi dx + ci, x E , Xa] ,

Xa. 1

the f_inction5 F a. have forward and backward derivatives, equal except

Yi

at corner points and such that

dFa./dx = F a .

Yi Yi

Corollary 2. At each corner betwee[, partition points of an admissible

arc Z satisfying the equations in the hypothesis of Corollary i,

the functions F a. have defined left and right limits which are equal.

Yi
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Corollary 3- On each sub-arc between partition points of an admissible

arc E satisfying the equations in the hypothesis of Corollary i, on

which the functions Yi(X) defining E have continuous derivatives and

the determinant

R _ =
a

a•Y' k _P_' Yi'

a

PYk

(i, k = i, ..., n)

(_, _' = i, .... m a)

is different from zero, the functions y[(x), _(x) belonging to E

have continuous derivatives of at least the first order with respect to

x.

Corollaries 1 and 2 follow directly from the equations in the

hypotheses.

Proof of Corollary 3. Let _ be a value defining a point interior to

some sub-arc cf tb_a stage with tne functions Yi(X) defining E having

continuous derivatives on this subarc and F_ _ 0 at x. The equations

J-x aF a, (x,y(x), u(x), _(x))= F a (x,y(x),y'(x), l(x)]dx + Ci,
Yi Yi

Xa- 1

a

_ (x, y(x), u(x)) = O, x E [Xa_l, Xa],

have tne solution_ ui(x) = yl(x), _ (x) = l_(x) along _. 14otice

the R_a is the functiona] determinant of the left members of these

equations with respect to ui, _ and _i / 0 at

(x, y' (_), _(x)) = (x, u(_), B(_)). Fheorems on implicit functions

say that solutions u i = y_(x), _ = l_(x) will have continuous
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derivatives with respect to x near _ of as many orders as the functions

in the equations, in this case _;, Fa,, have with respect to x, u, _.
Yi

l_is _uarantees then that we have continuous derivatives of y_(x), l_(x)

with respect to x of at least first order.

EXTREMALS, NORMAL AND ABNOrmAL ARCS

A stage extremal for the _ stage is an admissible subarc Yi(X)

without corners and with multipliers

2o = i, l_(x), _ = l, 2, ..., ma, x ¢ [Xa_l, Xa],

for which y[(x), 2(x) have continuous derivatives on the interval

[Xa_l, Xa] and satisfy equations _; = 0 and dFai/dxy = Fayi" An extremal

is an admissible arc which on each stage is a stage extremal. An

stage extremal is called non-sinsular provided _a # 0 along it. An

extremal is called non-singular if each of its stage extremals is

non-singular.

a

Let M be the class of admissible arcs satisfying _ = O, J = O.

An arc _ E M is said to have abnormalit_ of order r if it satisfies

Theorem 3 (the multiplier rule) with r and only r linearly independent

sets of multipliers of the form _op = O, _ (x), p= i, 2, ..., r.

If r = O, the arc £ is said to be normal. A set of multipliers 20,

_ (x)_ with lo = O will be an --abn°rmal .set of multipliers. If a

normal arc E has a set of multipliers, then by dividing by a suitable

constant these will have the form 20 = i, 2_(x). The set of

multipliers with _o = 1 for a normal arc is unique, since if it had

more than one they could be put in the form having /o = i, and the
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difference of two such sets of multipliers would be a set of multipliers

with _o = 0 and hence abnormal.

A THIRD IMBEDDING THEOREM

We can now prove for multistage problems the theorem given by

Bliss for one-stage problems [1, 2143. The proof again follows the

pattern of Bliss' proof.

Theorem 4. If an arc E • M is normal, then there exists an admissible

one-parameter family of arcs in M which includes E for parameter value

b = O and which has in every neighborhood of E arcs of M not identical

with E.

Proof. By Theorem 2, the normal arc E may be imbedded in an admissible

(q + 1) - parameter family of arcs Xc(bo, bl, ..., bq), Yi(X, b o 'bl'

..., bq) satisfying only the differential equations _ p = O.

Consider the matrix

3 ( fco'nio)

_( _co' "io )

and note that the maximum rank attainable for the last q rows must be

q. For, if it were less than q, then there would be a set of constants

= O, e (not all zero) satisfying the equation

)÷e

for every set of admissible variations _c' _i (x) and determining a

set of multipliers Io = O, 26(x) (not vanishing simultaneously) for

E. This contradicts E being normal. Now suppose that the variations
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}C_' _i_ have been chosen so that the determinant of the first q

columns of the last q rows of the above matrix is different from zero,

and let these be the variations of the family x c (bo, ..., bq),

Yi(X, bo, ..., hq). Substitute into the functions J , replace bq by b,

and consider the equations

J (bo, bl, ..., bq_l, b) = O.

These equations have the solution b
o

which the determinant

= b I = o.. = bq_ I = b = 0 at

b o _ b I _bq_ I

is different from zero. From implicit function theorems they have

solutions bf = Bf(b), f = O, l, ..., q-l, with continuous derivatives

near b = 0 and with initial values Bf(O) = O. 2he admissible one-

parameter family of arcs is obtained from Yi(X, bo, bl, ..., bq) by

replacing bq by b and bf by Hf(b). This family contains E for b = O,

and when b is sufficiently small the arcs of this family belong to M.

Replace the set of variations fcq' _iq (x) by the set _c' _i (x)'

then the variations along E of the one-parameter family are given by

_cfBf(°)+ _c' _if(X)B_(o)+ _i(x),

where the primes indicate differentiation with respect to b. If the

n variations

_if(x) B_(O) + _i(x)

are not all identically zero, then the family will contain arcs not

identical with E. Now when the functions _if have been chosen to

secure rank q for the matrix
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z.(  co. ,io) ..- fc q-l, ,i q-1)ll
the variations _i can alwsys be selected linearly independent of them,

thereby insuring that the variations

_if(x) B_(O) + _i(x)

are not identically zero. This selection can be made by determining

the functions /if(x) correspon_iing to the variations _if(x) by

means of t_le equations

_; _a fy( 1 .... n,= O, = x), y = m a + .Y

and then selecting fi(x) linearly independent of _if (f = O,i,...,

q-l) and finally choosing for the variations _i(x) solutions of the

equations

with the functions /i(x) substituted in these equations.

Corollary 4. If _c' _i (x) is a set of admissible variations

a O, 2 = O along a normalsatisfying the equations of variation _ =

arc E _ M, then the one-parameter family of arcs in M imbedding E of

theorem 4 can be so chosen that it has the set _o' _i (x) as its

variations along E.

Proof. The 0ne-parameter family constructed in T_eorem 4 will suffice

for this corollary provided B}(O) appearing in the variations, all

vanish. Consider the equations

J (Bf(b), b) = O, _ = 1 ..... q.

If we differentiate these equations, we have at b = O the equations
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( _cf' _if) B;(O)÷ _ (Yc' _i) : o.

Since _c' Hi(x) satisfy the equations _ = O, the above equation

reduces to

(_cf'_if)B_(O): o.

Now the determinant

has rank q and hence is different from zero. Hence the B_(0) are zero.

We can now state another corollary to Theorem 4, and, because it

is concerned with what happens on sub-arcs between corners of E, it is

precisely the same result that Bliss obtained for the Bolza problem

[1, 2153. We state it here without proof.

Corollary 5. Each of the sequence of elementary families which together

form the one-parameter family of arcs in M described in Theorem 4 and

Corollary 4, is defined by functions

Yi (x, b), x' < x < x", I b I< s,

t exist and are continuous in a
for which the derivatives Yib' Yib

neighborhood of values (x, b) satisfying the conditions x t < x < x _,

b = O. If the imbedded arc E is an extremal, so that the functions

Yi(X) aefining it have continuous second derivatives, then the

!

derivatives Yibb' Yibb' (Yibb)_ also exist at the values (x, b)

satisfying x t -< x _< x", b = O, and Yibb' = (Yibb)' . On each elementary

family the following differentials exist and satisfy the equations

= ' db +
dx ° = Xob db, ..., dXp Xpb db, dy i = Yi bYi'

= , d2x t dx 2 26y_ dx + b2yi .d2yi Yi + Yi +
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WEIERSTRASS CONDITION

We are now able to state and prove an analogue of the necessary

condition of Weierstrass.

admissible arc E satisfying the equations _; = 0 and theTheorem An

multiplier rule, with multipliers Io = l, l_(x), is said to satisfy

this analogue of the necessary condition of Weierstrass with these

multipliers if the condition

wa<x, y, y', _ , _) = Fa(x, y, Y', _ ) - Fa(x, y, y' , R )

- cYi- y, o
is valid at every element (x, y, y' , 3 ) of E, except possibly at

partition points of E, for all admissible sets (x, y, Y_) # (x, y, y')

satisfying the equations _; = O. Every normal minimizing arc E for this

problem must satisfy this condition.

We need the following lemma in order to prove Theorem 5.

Lemma 2. Let E be a normal minimizing arc. Then there is a set of

admissible variations Jof' _lf ..... _pf' _if (x)' f = O,1 ..... q-l,

_a = 0 along E such thatsatisfying the equations of variation

Proof of Lemma 2. Suppose that for every set of q admissible variations

satisfying _a = O the determinant I_(_, _)I = O. We consider the

equation _o 2 + e ___ = 0 which must be satisfied by every set of

variations. The condition that 13 _ I = O for a set of q ad-admissible

missible variations implies that R = O, contradicting the normality
o

of E.
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Proof of Theorem 5. Let _ be arbitrary and consider the stage

associated with the interval [Xa_l, Xa]. As in the Bolza problem

[1, 220], let t be an arbitrary point between corners of E a. Let ¥_
i'

i = l, 2, ..., n, be a set of values such that the element

[xt, Y(Xt) , Y'] is admissible and satisfies the equations _; = O.

This system of differential equations can be enlarged as in the proof

of Theorem 2 so taat the continuity properties described there hold

Y(Xt) a Inear the element [xt, , _ ] as well as near E a with _ay_ _ 0

at [xt, Y(Xt), Y_] as well as on Ea. The enlarged system defines a

set of functions zy(x) corresponding to the functions yi(x) defining

E a, and a set of constants Zy associated with the set [xt, Y(Xt) , Y'].

The equations of variation define functions fyo(X), _ = l, ..., s,

corresponding to each of the sets of admissible variations _co' _io (x)

of Lemma 2. As in the Bolza problem, we can infer the existence of

three families of admissible arcs

Yi(X, b), Xa_ 1 - 5 < X _ xt, I b I< _,

q(x, b), xt_ x _ xt ÷ e, I b I< _, I e I < _,

Yi(X,b,e) xt+eSX<Xa+6, lbl<_, lel< ,

satisfying differential equations

Yl = Mi (x, y, z(x) + b _o),

y_ = M i (x, y, z),

Yi' = Mi (x, y, z(x) + b ° _o)

Xa. 1 - 6 < x < xt,

Xt___ x_K x t + e,

xt + e < x < Xa + 6

and initial conditions
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Yi (Xa-l' b) = Yi (Xa-l) + ba _ia (Xa-l)'

Yi (xt' b) = Yi (xt' b),

Yi (xt + e, b, e) = Yi (xt + e, b).

The system of differential equations is equivalent to

a a

_ = O, _y = Zy(X) + b O _ia (x), Xa_ 1 - 6 < x _ xt,

a = O, _ = Zy, x t < x < x t + e,'_ _ _

a a nia(x) '_ = O, _y = Zy(x) + b a x t + e _ x < x a + b

with Y_
i = Mi(xt' Y(xt)' Z). For values e > O the three families form

a single admissible s-parameter family of arcs consisting of a finite

sequence of adjacent elementary fa;_ilies. Zhe functions defining

these elementary families and their derivatives with respect to x have

continuous partial derivatives with respect to the parameters b and e.

Continuity with respect to b follows from the arguments of Theorem 2

and for e from well-kno;_n existence theorems in differential equations

[i, 278].

If b = e = O then the first and third families reduce to the

functions Yi(x) defining the arc E a. _fhe variations along E a with

respect to b of the first and third families satisfy the differential
o

equations o_ variation (for the enlarged system) with the functions

_io(X) corresponding to the variations _io(x). If _i(x) denotes the

variations along the arc Ea of the first and third families with re-

spect to e, then t_ley satiefy the equations

a = O

and the relations
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Hi(X) _ O, Xa_ 1 - 6 < x _ xt,

x T.Yi( t) + ni(xt) = Yi

On each of the other stages one gets an s-parameter family y(x, b)

of comparison arcs and by matching up parameters these stage-wise

comparison arcs piece together a family of comparison arcs for the

problem under consideration. Furthermore, when

Xc(h) = xc + b Ica

are used to define staging points and substituted in the end and inter-

mediate point constraints J , then the functions J become functions

J (b, e) of the parameters b, e. At the values (b, e) = (0, O) these

functions have, as in the case of the Bolza problem, derivatives

_J _J

__m = 2 (_o' _)' __m =3 (_,.).
)b B )e B

a

The equations J (b, e) = O have initial solutions (b, e) = (0, O) at

Which functional determinant

is different from zero. Only the second subscript on fro' _o is being

used, actually these should read _ca' _ia" i_ow the equations

J (b, e) = 0 have solutions b a = Ba(e) which vanish at e = 0 and have

continuous derivatives near e = O. These derivatives satisfy the

equations

3( #co'_io) _(o) +3 ( 5o' _i) :°

at e = O. By replacing the parameters b by b ° = B (e) in the comparison

arcs and end and intermediate condition_, w_ get a on_-_rameter family
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of comparison arcs which contain the minimizing arc E for e = 0 and

which are admissible for sufficiently small positive values of e.

Now the function J can be written as a function of the parameters

b, • as follows,

J(b,e) = g[Xo(b) ..... xp(b),Y(Xo(b),b) ..... Y(Xa(b),b,e) ..... y(Xp(b),b)]

Xl(b ) Xa_l(b)

/ fl(x,y(x,b),_(x,b))dX+.o.+ /x a 2(b)fa-l(x,y(x,b),_ (x,b))dx
Xo(b)

xt /t +e
+ f (x,y(x,b),y (x,b))dx + fa(x,Y,?_ )dx

a_l (b) x t

Xa(b) Xa+l(h)

f (x,y(x,b,e),y (x,b,e))dx fa+l(x,y(x,b),y' (x,b))dx

xt+e Xa(b)

x (b)

+ ... + _/P

d
Xp_1(b)

fP(x,y(x,b),y'(x,b))dx.

using precisely the same techniques as are used in the Bolza problem

we find that the derivatives of J at (b, e) = (0, O) are defined by

JJ e_ ( 5co'_io) o,--_ + =
o

_J s < Sc._i_:e_x,y,y,; .Y,>It%--_+ ep. _

where

_(x, y, f, I , Y') = Fa(x, y, _, A ) - za(x, y, _ , I )

- (q-y_) Za(_, Y, y,,_).

The arcs defined by functions y(x, b, e) for x ¢ [Xa_l, x a] are

not admissible for small negative values of e but are admissible for
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small positive values of e. Since J(E) is to be a minimum, as e

increases from zero, the sum J(Bo(e) , e) must be non-decreasing. Thus

the derivative at e = 0 must be non-negative. The derivative of this

sum at e = 0 is given by

Jb (0, O) B_(O) + Je (0, 0).

It follows easily then that '_ (x, y, yt I , yt) _ 0 between corners

of E a. One can also see from simple continuity arguments that

W a (x, y, y', I , Y') > 0

at corners of 5_a.

CLEBSCH CONDITION

We follow the analogue of the lleierstrass condition by an analogue

of the Clebsch condition.

Theorem 6. An admissible arc E satisfying the equations _ = 0 and the

multiplier rule with multipliers 1o = l, _.(x) is said to satisfy

this analogue of the necessary condition of Clebsch with these multi-

pliers if the condition

Fy_y_a (x, y, yT, I ) _i_k _> 0

holds at every element (x, y, y', A ) of E, except possibly at staging

point, for all sets (_l' _2' "''' _n ) _ (0, O, ..., O) satisfying the

a (x, y, / , I ) _i = O. Every normal minimizing arc for
equations _y[

this problem must satisfy this condition.

Proof. Let E be a normal minimizing arc for this problem. Let _ be

arbitrary and _i' i = l, 2, ..., n, be a set of values satisfying the

equations
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a (x, y, y'
%0_y_ , I ) ui = 0

where the element (x, y, y', A ) belongs to E. Now n - m further
a

quantities _y are defined by the equations

a

_yy_ (x, y, y', I ) _i = ky"

T_e equations

a a + _ _y_ (x, y, p) = o, _y (x, y, p) = Zy

have the initial solution (¢, p) and determine a set of solutions

pi(_) with initial values Pi(O) = y_. Now the above equations become

a a +_
_ (x, y, p(_)) = 0, _y (x, y, p(_)) = Zy _y

T in
and differentiating with respect to E and replacing Pi(O) by Yi

notation produces

a a

so pi(0)= =i" _ow sets (x, y, p(E)) are interior to R for sufficiently

small e, hence from Theorem _, we have

_(x, y, y', ; , p(E)) Z O.

Recall _(x, y, y', I , p(e)) = Fa(x, y, p(¢), I ) - Fa(x, y, y,, _ )

- (Pi(E) - Yi) Fa'yi (x, y, y', I ),

and note _ = 0 at e = 0 giving a minimum value to :_. Differentiating

with respect to e and evaluating at E = 0 produces

(Ea(O)) T = _.F a, - _.Fa, = C

i Yi I Yi

a

and (Ea(O)) "" = F . , _i_k .
YiYk

Clearly, Fav[y, _i_k must be non-negative and this completes the proof.
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RELAXED CONTROLS FOR FUNCTIONAL EQUATIONS*

by

J. Warga

1. Introduction. We wish to study a class of variational prob-

lems defined by functional equations and, in particular, by non-

linear integral equations. Special problems of this kind, in-

volving one-dimensional "hereditary" and delay-differential

equations were investigated, among others, by A. Friedman [i],

M. N. O_uzt_reli [2 ], and A. Halanay [3 ] (see also [2 ] and

[3 ] for other references to work on such one-dimensional prob-

lems). Control problems defined by multi-dimensional integral

equations were discussed in a heuristic manner by A. G. Butkovskii

[4 ]. The "usual" control problems, defined by ordinary differ-

ential equations, also represent a special case.

Among possible applications of our results, as specialized

to integral equations, we may mention, in particular, nonlinear

control problems defined by partial differential equations that

are equivalent to Uryson integral equations. The methods that we

employ are closely related to those previously developed in [5]

and [6].

This research was supported by N.A.S.A. Grant NGR 22-011-020,

Supplement i.
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As a convenient framework for our study we consider the

following problem: let _ and Q be given spaces, %_ Hausdorff,

a subset of Q, E m the euclidean m-space, B 1 a closed

subset of E m , and F: _ × Q ÷ _ and

c = (cl,..,cm): _ × Q ÷ E m given functions. The "original

problem" consists in determining an "original minimizing

point", that is, a point (y,u) e _ × _ that minimizes

cl(y,u) on the set { (y,u) e _x _L IY = F(y,u), c(y,u) e BI};

the "relaxed problem" consists in determining a "relaxed

minimizing point" (y,q) and an "approximate minimizing solution"

{ (Yi,Ui) }_ , , - _ _i=l that is a point (y,q) e x Q that

minimizes cl(y,q) on the set { (y,q) e _ × QIY

F(y,q), c(y,q) e BI} , and a sequence {(Yi,Ui)} _i=l in

_ x _ such that Yi = F(Yi' ui) and lim c(Yi,U i) = c(y,q).

This formulation is motivated by a typical model of a

control problem: the parameter u describes the control functions

and parameters (that can be chosen from some "admissible"

set _ ), the point y describes a motion of the system

consistent with the chosen controls and subject to the "equation

of motion"

(i.i) y = F(y,u) ,

the relation

(1.2) c(y,u) e B 1

1
describes the restrictions imposed on the system, and c

is the cost functional.
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In general, as in the special case of variational

problems defined by ordinary differential equations, the original

problem , with controls in _ , does not admit a minimizing

solution even if the functions F and c are "nice". We

therefore embed _ in a set Q of "relaxed controls" and

define an appropriate topology on Q in which _ is a

dense subset of sequentially compact Q and F and c are

continuous when restricted to the set

{(y,q) _ _ x Q I Y = F(y,q)} This insures, subject

to certain mild assumptions about F and c , the

existence of a relaxed minimizing point (y, q) and of

an approximate minimizing solution. The desired "relaxed"

behavior of the system can be simulated by using an element

of an approximate minimizing solution.

In studying necessary conditions for minimum we

require somewhat different assumptions related to the nature

of _ as a Banach space, the convexity of Q , the existence

of (Frechet) derivatives Fy and Cy , and the

invertibility of I - Fy(y,q) at the relaxed minimizing

point.

We observe, in §§3 and 4, that the usual optimal

control problems defined by ordinary differential equations

belong to the class of problems that we have described; so do the

more general control problems defined by Uryson-type integral
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equations that we discuss in some detail in §§3,4,6, and 7.

We discuss, in §2 , the following aspect of the

general problem: (i) the existence of a relaxed minimizing

point (y,q) e _ x Q; (2) the existence of an approximate

minimizing solution; and (3) necessary conditions for a relaxed

minimum. The corresponding proof is presented in §5 . We

then apply these results in §§3 and 4 (with the proofs in

§§6 and 7) to a control problem defined by a Uryson-type

integral equation.

The general results for the Uryson-type relaxed control

problem that we present in §§3 and 4 require rather complicated

assumptions and setting that are introduced with the view

toward generality and possible applications. As a consequence,

the theorems are rather involved and the assumptions complicated.

We therefore present, at first, less general results that have

the advantage of greater simplicity.

1.3. The simplified Uryson-type control problem. Let T and

R be compact subsets of some finite-dimensional euclidean

spaces, dT the Lebesgue measure on T, and (t,T,v,r) + g(t,T,v,r):

x R ÷ E continuous and such that giT x T x E n n are inde-

pendent of t for i = 1,2,..,m _ n. We represent by S the class

of regular Borel probability measures on R . The "original problem"
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consists in determining functions

that yield the minimum of

y: T ÷ E and 5:
n

T÷ R

c (Y,0) = Y = I gI(T,y(T),0(T))dT

T

among all couples (y,p) for which y is continuous,

measurable,

(1.3.1) y(t) = I g(t,T,y(_),p(T))dT
T

and

(t e T),

i
(1.3.2) y = 0 (i = 2 ..... m).

i
(Note that y are constant for i _ m since the corresponding

i
g are independent of t). The "relaxed problem" consists in

determining a relaxed minimizing solution (y,_), that is,func-

tions Y: T ÷ E n and 5: T ÷ S that yield the minimum of

1
c (y,o) = y = I _ I g1(T,y(T),r)o(dr;T)

T R

in the class u% of all (y,c) for which y is continuous,

the function T + I _(r) o(dr;T) measurable for all continuous

R

scalar _,

(1.3.3) y(t) = I dT I g(t,T,y(T),r)c(dr;T)

T R

and

(t e T) ,

i
(1.3.4) y = 0 (i = 2,..,m).
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We can state, as a consequence of the results presented in §§3

and 4, the following theorem:

Theorem 1.3.5. Assume that g and gv = (_gi/_vJ) (i,i =i,.. ,n)

exist and are uniformly continuous and bounded on T _ T _ E n * R,

and that the class is nonempty. Then there exists a relaxed

minimizing solution (y,O).

If y is the unique continuous solution of the integral

equation (1.3.3) for o = _ then there exists a sequence

} _
{Pj j=l of measurable functions and a sequence {Yj }j=l of

continuous functions such that the (yj,Pj) satisfy equation

(1.3.1) for j = 1,2 .... and lim y_ = 9i for i = 1,2 .... m.

If the linear integral equation

w(t) = I k(t,T)w(T)dT (t e T)

T

has only the trivial solution w(-) = 0 for

k(t,T) = I gv(t,T,y(T),r)_(dr;T) (t,TeT) then the relaxed
R

minimizing solution (y,a) satisfies the following necessary

condition for minimum:

there exist a nonvanishing _ = (I I ,..,Im,0,.. ,0) e E
n

(k*ij
and a resolvent kernel k* = ) (i,j = l,..,n) of k such

k*ijthat (t,T) + k*ij(t,T) = (T) are independent of t for

i = i, .., m and
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(Weierstrass E-condition or maximum principle)

/ dT I _(T) • g(T,_,y(8),r)o(dr;@)

T R

= Min I _(T) • g(T,_,y(@),r')dT for almost all @ e T,

r%R T

where

_(T) = (_l(T),...,_n(T))

^,

m l 1and _J(_) = Z k*l.(T) + _J/ITI (j = 1 .... n; T 8 T).

i=l 3

(We say, in the present context, that k is a resolvent kernel

of k if the equations

w(t) = I k(t,T)w(T)dT + h(t) and w(t) = I k (t,T)h(T)d_

T T

are equivalent for continuous w and h).

+ h(t) (t e T)

The above theorem, which we prove in §8, is much too weak

for our purposes: it does not even apply to control problems

defined by ordinary differential equations. We consider, there-

fore, in §§3 and 4, a Uryson-type control problem in a more

general setting: the sets T and R are assumed metric and

compact, the "original controls" p are restricted by the con-

dition

p(t) 8 R#(t) (t 8 T) (where t + R#(t) C R is given)

and the "relaxed controls" o satisfy analogous restriction% the
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function g has, as an additional argument, a "control parameter"

b in a metric and compact space B, the condition (y2,..,yn) = 0

is replaced by (yl,..,yn) ¢ B 1 for a given B 1 , the uniform

continuity and boundedness of g and gv are reFlaced by weaker

assumptions, and the class _ of solutions y of the integral

equation is extended beyond the class of continuous functions.

We then study the existence aspects of the control problem

for integral equations assuming _i to be LI(T,En); and

we examine necessary conditions for a relaxed minimum assuming

that _ is either LP(T,E n) for 1 < p < or
C (T,En).

Necessary conditions for an original minimum will be discussed

separately along the lines of [6]. We might mention, finally,

that certain more general unilateral and minimax control

problems that have been investigated for ordinary differen-

tial equations [7], [8], [9] extend quite naturally to integral

equations; but we have only partial results so far.

I wish to acknowledge with thanks several stimulating

conversations with J. Frampton.

2. The General Control Problem. Lemmas 2.1 and 2.2 below are

obvious and are stated only to motivate the corresponding state-

ments concerning the Uryson-type control problems and their

proofs (Theorems 3.2 and 3.3). Theorem 2.3, on necessary condi-

tions for minimum, is patterned after [6, Theorem 2.2, p. 644]

and relies ultimately on a construction of McShane [i0, pp. 17-18].
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We use the term "derivative" to mean "Frechet derivative"

and the notation hx(X 1 ,yl ), hy(X 1 ,yl ) to represent partial

derivatives. If h is defined for x in a subset _ of

a Banach space _ and y in a Banach space !J ,

with values in a Banach space 3 ' we say that h has a

derivative h (x,y) (xl'Yl) at (xl,Y I) relative to

F x lj if h (x,y)(xl'Yl) is a linear operator from

× to } suchthat

lh(x2,Y 2) - h(Xl,Y I) - h(x,y ) (xl'Yl) ((x2,Y 2) (xl,Yl)) I =

o(]x 2 - Xll _ +ly 2 - yli_) for all x 2 e F and

for all Y2 e _3 " The symbol I represents the identity opera-

tor on 9 " If Q is a convex subset of a linear space,

is any set and h is a function from _x Q to some Banach

space, we write Dh(x,q; q - q) for lim _(h(x,q + u(q -2)) - h(x, 2)).
_++0

We denote by A the closure of A.

i Lemma 2.1 Let _I and Q be Hausdorff spaces, Q and
Yl = {y e _i IY = F(y,q), c(y,q) e B 1 , q e Q} sequentially

compact and F and c continuous when restricted to Y1 x Q.

Then either there exists a point (y,q) that minimizes

I cl(y,q) on { (y,q) e _ x QIY F(y,q), c(y,q) e B I} or

_i =

that set is empty.

I Lemma 2.2 Let _ and Q be Hausdorff spaces, _ a
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dense subset of Q , and (y, q) a relaxed minimizing

solution. Assume, furthermore, that Q satisfies the

first axiom of countability and that

(2.2.1) y is the unique solution of the equation

y = F(y, q);

(2.2.2) there exists a neighborhood Q of q such

that the equation y = F(y,q) has at least one

solution y for each q e _i_ Q ; and

(2.2.3) the set Y2 = {y e %1 IY = F(y,q),q e Q}

is sequentially compact and F and c are continuous

I when restriced to Y2 x Q .

r

1 Then there exists an approximate minimizing solution.

Theorem 2.3. Let q,i be a Banach space, Q a convex

subset of a linear space, _ an array with real elements

_13(i,j = l,...,m) considered as an element of E 2 with
m

• • m

origin 0 _ _ = { u I ij > 0 _ el] < i} and (y,q)
, _ , _ ,

i,j = I

a relaxed minimizing point. Assume, furthermore, that for each fixed
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subset {qij I i, j = 1 ..... m} of Q there exists a neighbor-

hood _ x _ of (_, 0 r) in _x _ such that the functions
m

(y, _) ÷ F(y,q + i, j =IZ _ij(qij - q)) : _ x _ _ _ and

m wi j _
(y, _jT) + c(y,q + Z (qij - _)) : x _ ÷ E are con-

i,j = 1 m

tinuous, have derivatives at (y, 0 _) (relative to _ x _)

and continuous partial derivatives with respect to y on

that

_I x _, and_the operator I - Fy(y,q) is a linear homeomorphism

of _ onto _. Let K 1 be a convex set in some E_,

e K I, and _ = (_i .... ,_m) : K 1 + B 1 a continuous mapping

with a derivative at _ and such that _(_) = c(y, q). Then

either

i(_)_ = Min i([)_,

(2.3.1) @_ _gKI @_

or there exist Y > 0 and X e E
-- m

such that IX1 _ 0,

(2.3.2) l {Cy(y,q) (I - Fy(y,q))-iDF(y,q; q- q) +

Dc(y,q; q - q)} >_ 0 for all q e Q,

and

(2.3.3) _ 6 1 - X) ¢_(_)_ = Min ( ¥@i - _) ¢_(_)_ '

_eK 1

where 61 = (i,0,...,0) e E m.

3. Control Problems Defined by Uryson-type Inte@ral E_uations.

Existence of Relaxed and Approximate Minimizing Solutions.

Let T, R and B be compact metric spaces. We assume that

a nonnegative, flnite, regular, complete, and nondtomic

measure dt is defined on the Lebesgue extension of the

Borel field of sets in T and we consider the corresponding
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product measure dtdT on T _ T. The symbol IMJ represents

the measure of McT, /h(t)dt the integral over T, Ja,bJ

the distance in a metric space, and laJ (or JaJE) the norm

in a normed linear space E. We represent by LP(T,_

(i < p < _) the Banach space of measurable functions h from

T to a Banach space _ with the norm Jh(.) Ip = {lJh(t)J_ dt} I/p
space

and by C(T,_ the BanachAof continuous h from T to

with the norm lh(-) J_ = sup Jh(t) I_ • We also set
taT

LP(T) = LP(T, E I) and C(T) = C(T,EI).

Ori@inal and re_axed controls.

Let _ be the class of measurable mappings from T

_o R. As in [5], we refer to functions from T to R as

"original controls". Let S be the class of regular Borel

probability measures on R, and J the class of "measurable

relaxed controls", that is, mappings _ from T to S

that are measurable in the sense that t + I R _(r) _ (dr; t)

is measurable on T for every continuous _ : R + E 1 . We

as a subset of J by identifying the function
define

t + p(t) with the function t ÷ _ (t), where _ (t) is a
P P

measure concentrated at p(t) with mass i. We also identify

all controls, original or relaxed, that differ only on sets

of measure 0.

Topolog[ in the space of measurable relaxed controls.

We define a topology in _ as in [5, p.631]; we repre-

sent by _ the Banach space (which is actually the space

LI(T,C(R))) of real-valued functions # on T × R, continuous

on R for every t, measurable on T for every r, with

= Isup I #(t,r) I dt.
t + sup J _(t,r) I integrable, and with J_J_

r_R reR

We then define every _ e _ as an element of _ (the

topological dual of _ ) by setting <_, _> = IdtlR_(t,r) _ (dr;t)
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for all _ g _. The topology we choose for

"S and _, is the weak star topology in _ *

9")- It follows that lim _. = _ implies

i+ _ l

/dt I _(t,r) G(dr;t) for every _ e_J.

R

Sets _ # and _ # of restricted controls.

For a given mapping R # from T to the class of nonempty

subsets of R, we set _# = {P £_JP(t) g R#(t) on T} and

_# = {_ e _ J_(R#(t),t) = 1 on T}, where R#(t) is the closure

of R # (t).

We shall consider mappings R # satisfying either or both of

the following assumptions ([ 5, Assumption 2.3, p. 631]):

(_3.1. i) For every _ > 0 there exists a closed subset T_ of

T, of measure at least JTJ - c, such that for every t g Tg

=_._; every r g R#'_,_, there exists an original control 0 g _#,

continuous at t when restricted to T_, and such that

I IP(_), rJ < e.

-1.2) For every c > 0 there exists a closed subset T 6 of

T, of measure at least JTJ - _, such that the mapping R #, when

restricted to T G , is continuous with respect to the Hausdorff

distance of sets JR#(tl), R#(t2) J (where, for A, B C R,

JA,BJ = inf {hlA C U(B,h) , B C U(A;h) } and U(A,h) is the

h-neighborhood of A in R). Here we identify all subsets of

R whose mutual Hausdorff distance is 0.

Formulation of the Uryson-tyRe control problem.

Now let g = (gl,...,gn) , and let (t,T,v,r,b) ÷ g(t,T,v,r,i

T _ T * E x R _ B + E be measurable in (t,T) for every fixe_
n n

_*, and its subsets

(the _ topology of

lim /dt I _(t,r)ai(dr;t)
i +_ R
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(v,r,b) and continuous in (v,r,b) for every fixed (t,T). We also

assume that gl(t,T,v,r,b) = gl(T,v,r,b)(i = 1 ..... m _< n)

is independent of t for all (_,v,r,b) Let

f(t'%_'v;s'b) = JR g(t,_,v,r,b) s(dr)

for all (t, T, v, b) and all s e S. We consider solutions

(y , _, b) of the integral equation

y(t) = f f(t, T, y(T), a(T), b)dT (t e T)

in _× /.# × B, where _o is some Banach space of measur-
able functions from T E

n

A solution (y, _, b) is "a relaxed admissible solution"

if (yl, y2, ......,ym) e B 1 (observe that yi(i = I, ,m) are

constant on T since gl(t, _, v, r, b) (i = l,...,m) are

independent of t). A relaxed admissible solution (y, _, b)

is "a relaxed minimizing solution" if _ 1 < yl for all

relaxed admissible solutions (y, _, b).

We relate the control problem just described to the general

problem discussed in §2 in the following manner: let

_= _ x B and Q = _ × B. We let the mappings

(y, q) ÷ F(y, q) = F(y, _, b) and (y, q) ÷ c(y, q) =

c(y, o, b) be defined, for q = (s, b) e _ B and y e _./ , by
+ j

F(y, _, b)(t) = If(t, T, y(T), S(T), b)dT

ci(y, _, b) = Ifi(T , y(T), O(T), b)dT

if this defines F(y,_,b) as an element of

Otherwise we set, for some a e , a _ 0 ,

F(y, _, b) = y + a,

c(y, _, b) = 0.

(t e T) ,

(i = 1 ..... m) ,
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We can easily verify that, in the case where T

is the interval [t O , t I] of the real axis and g (t, T, v, r, b)

',as a special form,

the Uryson integral equation becomes an ordinary

differential equation, our control problem the "standard"

control problem, and the results that follow a slight generaliza-

tion of previous results [ 5,Theorem 3.1, p. 633], [ 6,Theorem 3.4,

p. 648]. We further discuss this problem in _ 4.

We can now state existence and approximation theorems

that we prove in §5. In both of these theorems we set _= L_T, En).

eorem 3.2 There exists a relaxed minimizing solution if the

I following conditions are satisfied:

the class of relaxed admissible solutions is

'_ = LI(T, E n) ;

R # satisfies Assumption (3.1.2);

(3.2.1)

nonempty _or

(3.2.2)

and either

(3.2.3) there exists a positive function _, integrable

on T x T and such that, for every solution (y, o, b) of the

equation y = F(y,o,b), we have

[g(t, T, y(T), r, b) I < _(t, T) on T x T x R x B,

or

(3.2.4) there exist real numbers Cl, p, and 8 and a

measurable 40 on T x T such that 0 _< 8 < _, 1 _< p _< _,

p > B,

Eg(t,• v, ,- b)l <11 -,-''Ivls ) ,l,O_-,T_on T X T X E
w _, 4-- • "- " n

x R x
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/l_0(t, ")Ip dt <P/(P - 8)

and every solution (y, s , b) of the equation y = F(y, a , b)

is such that I Y(')I < c I .p --

i Theorem 3.3 Let R # satisfy Assumptions (3.1.1) and (3.1.2),

the unique solution of the equation y = F(y,a,b) for

= _ e _ # and b = 5 e B. Assume, furthermore, that

(3.3.1) the equation y = F(y, p, 5) admits at least

one solution y in LI(T, E n) for each p e _# in some

neighborhood of _, and either condition (3.2.3) or condition

J 7(3.2.4) is satisfied. Then there exists a sequence {pi } = 1

in_ # and a sequence {Yi}_ = 1 in LI(T, E n) such that

Yi = F(Yi' Pi' b) and lim c(y i, Pi' 5) = c(y, o, b).

and let y b

4. Necessary Conditions for a Relaxed Minimum of a Uryson-type

Control Problem. We shall investigate necessary conditions

for a point (y, _, b) to be a relaxed minimizing solution

in a somewhat different framework than was required in §3.

Assumption 4.1

! (4.1.1) _ is either LP(T, E n) for 1 < p < _ or

C(T, En) , and T and R have the properties described in §3;

(4.1.2) B is a convex subset of a linear space;

(4.1.3) for every fixed choice of b.. e B (i, j = l,...,m)
_3

there exists _ e (0, l/m 2] such that, for _ =
max

{wD= (_iJ) (i, j = 1 ..... m) 10 _ ij _ _max} C__ E 2 ' the func-
m m

tion (t,T,v,r,_ O) + g#(t,T,v,r,_ _) = g(t,T,v,r,_+ _ _iJ (bij-b))
i,j=l

T x T x E x R x _ ÷ E has a derivative with respect to
n n

(v,_Q), and g# ,g_ , and g_ are measurable in (t,T)

6O



A

RELAXEDCONTROLSFORFUNCTIONAL EQUATIONS

for every (v, r, _ and continuous in (v, r, _) for

every (t,T) ;

(4.1.4) if _J = LP(T, E n) then there exist measurable

positive functions _0 and _i on T x T and numbers _ and 8

such that 0 <_ _ < p-l, 0 < 8 < p, /]_0(.,T)I p/(P-B) aT < _,

/l_l(t,.}l p dt < m, I1_1(" T) p/(p-l-e) dT< _p/(p-l-s) ' p '

add, for all (t, T, v, r) e T x T x E x R, b.. e B,
n l 3

and _ e _,

Ig#(t, _, v, r_]_)[ < (1 + Ivl B) _Do(t,T),

and

Igt(t, T, v, r_o_)] _< (1 + Ivl% t_l(t, T),

[gtr? (t, T, v, r, _U) l<_ (1 + IvlBI _o(t, T);

if = C(T, E n) then there exists a compact set D in E n

containing {_(t) J t e T} in its interior and integrable _0

and 41 on T such that

Ig#(t, T, v, r,u) _) { < _0(_),

and

Igt(t, T, v, r,_)l <_ _I(T),

Ig#_(t, Y, v, r, _I_) < _O(T )

for all (t, T, v, r) e T x T x D x R, b.. e B, and
l]

D e _. Furthermore, there exists a positive function h + _(h)

^ g# # and g_,,
such that, for tl, t 2 e T and g = ' gv '

0
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^

ISup I g(t I , T, v, r,w O) - g(t 2 , _, v, r,_ °) IdT
<

DxR×_

and lira _ (h) = 0;

h ÷ +0

(4.1.5) for k(t,_) = fv(t, T, y(T), _(T), b) on

T x T, the integral equation

w(t) = /k(t, _) W(T)dT (t e T)

has only the solution w(-) = 0 in _.

Resolvent kernel. If there exists a measurable real matrix-

* ( _) (i, j = 1 ..... n) on T x T such
valued function k = _k*"

that, for every x e _, the relations

w(t) = /k(t, T)W(T)dT + x(t) a.e. in T

and

w(t) = Ik (t, _)x(T)dT + x(t) a.e. in T

It I , t21)

are equivalent in we refer to k as a resolvent kernel

of k.

We can now state necessary conditions for a relaxed

minimum in Theorem 4.2 below. Conditions (I), (2), and (3)

of (4.2.2) are generalizations of respectively the Weierstrass

E-condition, transversality with respect to parameters and

initial conditions, and transv_rsality with respect to the end

conditions of the calculus of variations.

I Theorem 4.2 Let (y, c, b) be a relaxed minimizing solution,

and let Assumption 4.1 be satisfied. Let_ be a
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denumerable subset of , R (t) = {p(t) I P e _ } (t e T),

R (t) the closure of R (t), S (t) = {s £ S I s(R*(t)) = i},

K 1 a convex set in some E(, _ e K I, and $ : K 1 + B 1 a

continuous mapping with a derivative at _ and such that

¢i(_) = ci(y, o, b) = y i(i -- 1 ..... m). Then

(4.2.1) there exists a resolvent kernel k of k

such that k *i is independent of t for i = 1,2,...,m;
3

P/(P - l)dT < _ if _ = LP(T E n) andand llk*(.,T) I P

/ sup I k (t,T) I dT < _ if _= C(T, E n) ;_eT

i(_)_ = Min ¢_(_)(4.2.2) either _ ,

_eKlor there exist a nonvanishing I = (l I, --,A m) c Em

and _ > 0 such that,setting

^ (11.i, mI .... ,l ,0,...0) = (1,0,...,0) e E n ,

and

^j
m lik, i + _ j=l .... n) ,_J (T) = Z (T) ( _eT, •

i ._ 1 J ITI

{(T) = (el(T) ..... _n(T)) (TeT),

Hl(S, 8) = I_(T) " f(T, 8, _(8), s, 5)dT ((s,B)_xT),

H2(b) = IT x T _(T) " Df(T,B , y(8), _(8), b; b - b)dTd8 (beB),

the following conditions are satisfied:

(The Weierstrass E-condition)

(i) HI(_(8) ,8 ) = Min Hl(S,8) =
soS* (0)

Min I _(T) • g(T, 8, y(8), r, b)dT for almost

reR* (8)

all 8 £ T,

(Transversality Conditions )

(2) Min H 2(b) = 0,
beB
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(3) (Y61- _)_(_)[ = Min (Y_I - l)_([)_' where

_eK 1

61 = (i, 0 .... ,0) e E m.

In particular, if R#(t) = R for all t e T, R (8)

and S (0) can be replaced by R and S,

in relation (J).

respectively,

An illustration. As an illustration, we shall apply Theorem 4.2

to the following "standard" relaxed control problem: let T be

the closed interval [t0,t I] of the real axis, dT the Lebesgue

measure on T, B 1 C E m, B a convex subset of some E£, _0

a continuously differentiable mapping from B into E with
m

the image B 0, and h: T x E m x R + E m. We wish to determine

functions x: T ÷ E m and 5: T + S that yield the minimum of

xl(t I) among all absolutely continuous x and all measurable

(in the previously defined sense) _ that satisfy the relations:

dx(T)

dT = I h(T , x (T) ,r) o(dr;T) a.e. in T,
R

x(t 0) e B0, x(t I) e B I.

We set n = 2m, g = (gl,..,gn) , Y = (yl,..,yn) , v = (Wl,W 2)

with Wl,W 2 e Em, and, for all (t,_,v,r,b) e T × T × E n x R x B

and i = 1,2,..,m,

yi+m(t ) = xi(t) ,
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yi(t) = x i(t I) ,

i+m
g (t,_,v,r,b) =

h(T,w2,r) + _0(b)/(tl-t 0) for T <_ t,

_0(b)/(tl-t 0) for T > t,

gi (t,T,v,r,b) i+m(t ,
= g 1 Y,v,r,b).

We then observe that our new problem is formally equivalent

to the Uryson-type control problem considered in §3 and in the

present section. We can easily verify that Theorem 4.2 is ap-

+iplicable if we set = C(T,E n) and assume that

(T,w,r) ÷ h(T,w,r) and hw(T,w,r)

exist on T x E _ R, are continuous in (w,r) and measurable in
m

T, and that lh(T,w,r) I and lhw(T,w,r) I are bounded by an

integrable function of T for all (w,r) e D x R, where D is

some compact set in E m containing the trajectory {x(t) It e T}

in its interior.

We can evaluate the resolvent kernel k by a straight-

forward (if somewhat tedious) computation and determine that

1 lj 1 zj (tl)
_J (T) tl_t 0 tl_t 0

(_ e T, j = l,..,m),

_J+m(T) = -dz j (T)/d_ (T £ T, j = 1 .... m) ,

where the absolutely continuous function T ÷ z(T): T + E m is

the solution of the system
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dz(T) z(T) : - AT(T)Z(T) a.e. in T
dT

z(t I) = _,

A T is the transpose of A, and A(T) = /Rhw(T,x(T),r)_(dr;T) (TeT).

It follows then that

Hl(_,r) = z(8). I h(@,x(@),r)_(dr;_) + 1 z(t0)-x(t 0) (_eT,reRi
R _7

Thus relation (i) of Theorem 4.2 yields the familiar Weierstrass

E-condition (maximum principle) for the relaxed control problem

defined by ordinary differential equations. In a similar manner,

relations (2) and (3) yield the support (transversality) condi-

tions at the initial and terminal points t o and tl, respectively.
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5. Proofs of the Statements in §2. The proofs of Lemlnas 2.1

and 2.2 are trivial and will be omitted.

Proof of Theorem 2.3 We first consider the special case

where S 1 ={(b I ,b m) I b i 0 (i 2 .... m)}t°°° _ = , °

Consider the equation

m • •

(5.1) y = F(y, q + Z _13 (qij - _) )
irj = 1

for an arbitrary choice of q _= (qij) with qij e Q. We

can apply, with minor changes, the proof of the implicit

function theorem [II, p. 265] to show that there exists a

neighborhood y x _ of (y, 0_ relative to _ _ _ such

that equation (5.1) has a unique solution Y = n(_ q_) e

for every ma_ _ and the function _ ÷ n(_, qa) : _ ÷

is continuous and has a derivative at 0 _. It follows that

~ m

_U+ c(_ _, q_) = c(n(_ _, q_), _ + Z _iJ (qi j - q)) : _ ÷ E
i,j = 1 m

a

is also continuous and has a derivative at 0 .
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Now let 8 11 = 0, 8 ij = 0 ((i,j) _ (i,i)), qij = q(i,j = 1 .... m),

h(8; q) = c(00, _o) , V = {dh(0; q)/d8 I q e Q} , and let W

be the convex cone in E generated by V; that is,
m

m in

W = { _ aivi I v i e V, a i >_ 0} We shall showA_he sequel

i = 1

that there exists I e E m such that Ill # 0, 11 _> o, and

l'w > 0 for all w e W.

If this last statement is true, then I " dh(0;q)/d8 >_ 0

for all q e Q. We have dh(0;q)/d8 =

Cy(y,q)_ ii(0 m, _) + Dc(_, q; q - q). Also, the differentiation

of both sides of the equation n(8_; _ = F(n(8[_; _U), _ + 811(q _ _)

with respect to 8 II at 0 _ yields

ii(0 m, _ = Fy(y, q)_ ii(0 =, q_) + DF(y, q; q - q).

We then conclude that

(5.2) I • dh(0;q)/d@ = I • {Cy(y,q)(I - Fy(y,q))-iDF(y,q;q - q)

+ Dc(y, q; q - q)} > 0 for all q e Q-

we now proceed to prove that there exists a point 1 as

just described. Indeed, assume the contrary. Then it follows

from elementary properties of convex sets that there exists

a point w = (w I, 0, .... ,0) in the interior of W, linearly

independent w i e W and positive _l(i _ l,...,m) such that

1 m i
w < 0 and w = _ _ w..

1
i = 1

By the definition of W, there exist points qij and numbers
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a 13 (i, j = l,...,m) such that a 13 > 0 and

m . .

w i = Z a 13 dh(0; qij)/d8
j = 1

(i = 1 ..... m) .

(w 3) (i, j = 1 ..... m)Since the w. are independent, the matrix
1

is nonsingular.

Now let F = {y e E [ 0 < yi < (i = i, .,m)} where
m -- -- Ymax "" '

Ymax is positive and sufficiently small so that _(y) =

(13(_) ) = (yl a13) E _, and consider the function y+k(y) =

c(_m(y); qm) : F ÷ E m. This function is continuous and has

a derivative ky(0) = (_k(0)/_y I, ..., _k(0)/D7 TM) at 0 relative

to F (where _k(0)/_yi are right-hand derivatives). Furthermore,

_k (0)/_Y _ m . . m
= Z dh(0; qij)/d8 _wl3 (0)/_y 2 = I dh(0;q_j)/de • a

i,j=l j = 1

= w_ ( _= 1 ..... m); hence the derivative k (0) = (w_) has an

inverse and k (0)_ = w = (wl,0 ..... 0) for _ = ( 1 m)
#...,

It follows (as in [6, p. 650]) that there exists a solution

c + y(C) of the equation

k(y(_)) - k(y(0)) = £w

for all sufficiently small positive £, and 7i(c)-_ *0 (i = i,.. ,m).

m _-_o

There exist, therefore, q = q + Z _ 13 (y (c)) (qij - _) e Q
i,j=l

and y = _(_£](y(c)) ; q_) e I I such that y = F(y,q), ci(y,q) = 0

(i = 2 ..... m), and cl(y,q) < cl(y, q), contradicting the

assumption that (y,q) is a relaxed minimizing point.

We conclude that when B 1 = { (b I,... ,b TM) Ib i = 0 (i = 2 , .... m) }

there exists a point A e E such that i ii _ 0, X I > 0,
m

and relation (5.2) is satisfied.

_j
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We now consider the general case and define the sets

Q# and B # and the functions F# : _'_x,, Q# ÷ "_/ and

c_ _ Q_ by: ÷ Em+ 1

Q# = Q x El , B # = _ v0, vl,.-., vm) I vi = 0( i = l,...,m)}

F#(y,q,_) = F(y,q),

#0 c 1c (Y,q,_) = (Y,q) ,

c#/(y,q,_) = d(Y,q)- _'_'(_)(J= 1 ..... m).

Clearly, the point (y,q,_) is a relaxed minimizing point

for the problem defined by _2_, Q#, B_, F # and c #, which is

of the form just investigated. The conclusions of the theorem

follow from relation (5.2) applied to the transformed problem;

the details of the argument are as in [6, Proof of Theorem 2.2,

p. 650]. QED

6. Existence of relaxed and approximate minimizing solutions.

for Uryson-type problems. Proofs.

Lemma 6.1 Let conditions (3.1.2) and (3.2.3) be satisfied,

and let

= _ , y F(y _ b) q e _'#, b e B} _Then everyY2 {y e = , , , . •

sequence {Yi}i = 1 in Y2 has a subsequence converging to

I some Y e _/= LI(T, En)-

Proof: Let Yi = F(Yi' oi' bi) (i = i, 2,...,) , Yi e q_ p

_i e j and b i e B. We must show that there exist a sequence

5(J of natural numbers and a point y in such that

lim Yi = 9 in -_/.
ieJ

Let, for v e En, X(v) = 1 if ivl < 1 and
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and

1 if Ivl > l,
Ivl 2

g(t, T, V, r, b) = x(Ig(t, T, v, r, b) I/_(t, T))g(t, T, v, r, b),

f(t, T, V, S, b) = I R g(t, T, v, r, b)s(dr),

for all t, T, v, r, b and all s e S. Then, by (3,2.3),

g(t, T, y(T), r, b) = g(t, T, y(T), r, b) on T x T x R × B

for every y e Y2; hence every solution (y, _, b) of the

equation y = F(y, o, b) also satisfies the equation

(6.1.1) y(t) = I f(t, T, y(T), O(T), b)dT (t e T).

Furthermore,

Ig xRxB(t, T, V, r, b) I <_(t, T) on T x T × E n

and g is continuous in (v, r, b) and measurable in (t, T).

Nbw let _(t) = l_(t, T)dT on T, S N = {v e Enl I vl < N},

PN = {t e T I ;(t) <_ N}, and z > 0. Then there exists

N = N(£) such that, for P = PN(c),

1

(6.1.2) I dtlT_p_(t, T)dT < _.

Since g is measurable in (t, T), continuous in (v, r, b)

onthe compact set S N x R × B, and Ig(t, T, v, r, b) I < _(t, T),

~ i

the restriction of g to T x p × S N × R x B is, for each

i = l,...,n, an element of LI(T x p, C(S N x R x B)); there

exist, therefore, an integer k = k(c) and functions

_-'3 _- _T.I_,_ x P_, End, and 8j _- C(SN' x R x B) such that
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k

ITI P Max ] _(t,_,v,r,b) - _, Bj(v,r,b)_(t,T) I dtaT <_¼ _.
SN×RXB j=l

Furthermore, each ej e L I(T x p, En) can be approximated

by a finite sum Z b2(T) a_(t), where b i are measurable

characteristic functions on P and a_ e LI(T, En). We

conclude, therefore, that relation (6.1.3) can be rewritten,

by appropriately changing the definitions of k and B j, as

(6.1.4)
k 1

ITI P Max l_(t,T,v,r,b) - E 8j (v,r,b)bj(T)aj (t) I dtdT <_ _ £,

SNXRXB j=l

and we may also assume that 18j(v,r,b) I < 1 on SNXRXB.

Now let

Yji = Yji (£) = fp bj (T)dT IRSj (Yi(T) ,r,bi)oi(dr;T) .

We observe that

lYi(t) I < /If(t,T,yi(T),Oi(T),b i) ] aT <_ I_(t,T)dT < N = N(e)

for t e P = P(¢) and all i = i, 2, 3 .... Therefore, for

all integers p and q, for all t e T, and for k = k(_),

lyp(t) - yq(t) I < 2fT_ P _(t,T)dT + lip dT{I R g(t,T,yp(T),r,bp)_p(dr;T

- fR g(t,T,yq(T) ,r,bq)_q(dr
k

<_ 21T_ p _(t,T)d_ + ] E (yjp - yjq)aj(t) I
j=l

k

+ 7 fp Max Ig(t,T,yi(T),r,b i) - _iBj(Yi(T),r,bi)bj(T)aj(T) Id_;
i=p, i=q reR j

hence, in view of relations (6.1. _ and (6.1.4),

k
1 1

(6.1.5) fTlYp(t) - yq(t) Idt _ _ C + _llyjp - yjql/T[aj(t) ]dt + _ £.
J
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Given any infinite subsequence J of { i, 2, . . .), we

can determine a subsequence jl = j/(_, z) such that the

sequences {Tji(_)}iej1 have a limit, for each j = i, 2,...k(_),

since IYji I < IPI < ITI for all i and j. Now let

Jo = {1, 2.... }' J _+1 = J_¢JY-' 2-.4]) ( t= o, i, 2....),

and let J be the diagonal subsequence of J0' Jl' .....

Then {Yji(c)}ie_ converges for each c > 0 and j = 1,2, .... k(z),

and there exists an integer i 0 = i0(£) such that, in view

of (6.1.5) ,

IT lyp(t) - yq(t) I dt < ¢

provided p [ q _ i0(e) and p,q e _.

We conclude that {yi(-)}ie_ is a Cauchy sequence in

LI(T, E n) and converges, therefore, to some y in LI(T, En). QED

Lemma 6.2 Condition (3.2.4) implies condition (3.2.3).

Proof. Let (y, _, b) satisfy the equation y = F(y,o,b),

and assume that condition (3.2.4) is satisfied. Then, for

t e T,

ly(t) I < IfTdTf R _(t,Y,y(T),r,b)o(dr;T) I < f(l + Iy(T)_B)_0(t,T)dT

and, by H61der's inequality n

ly(t) l < /_0(t_T) aT + IY(')18p I_0(t,')Ip/(p-8) < l_0(t'')Ip/(p-8) ITII

I_0(t,.) Ip/(p_8 ) c61 = ¥1_0(t,.) ]p/(p_S) , where 7 =CS+l ITIS/P

It follows that, for all (t, T, r, b) e T x T x R x B,

Ig(t,T, y(T), r, b) I < (i + y81_0(T,-)Ip/(p_8))_0(t,[)
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Now let the expression on the right be denoted by

_(t,T) let c 2 =I/I_0(T,')I p dT}8_and let
' P/(p=8 )

/(t,T) = _0(t,_) I_0(T,. ) IpS/(p_8) . Then, by H61der_ inequality,

/_/(t,T)dT < I_0(t,-) Ip/(p_8) {/l_0(t,.)l p .... dt} 8/p
-- p/_p-_ J

and

ii_/(t,T)dtdT < IT I (p-l)/p ci+8

/TxT@0(t,T)dtdT < _. It follows that (t,T) + @(t,T)

is integrable on T x T. QED

Also

6.3 Proof of Theorem 3.2. Because of Lemma 6.2 it suffices

to assume that conditions (3.2.1), (3.2.2) and (3.2.3) are

satisfied. Now let {(Yi' ci' bi)}i=l be a sequence in

_j x _# x B and = F(Yi, By (3.2.2) andYi _i' bi).

[6, Theorem 2.5, p. 632] the set _# is sequentially compact,

and by Lemma 6.1 there exists a sequence J and a y e _

such that lim Yi = _ " We may choose J so that lim _. =

ieJ~ isJ 1

and limb. = b for some _ E # and b c B, and

ieJ

lim Yi = _ a.e. in T, say for t e T/.
ieJ

For each fixed t and T in T/, g(t, _, ., • , .) is

continuous, hence uniformly continuous, on the compact set

D T x R x B, where DT is a compact subset of En containing

y(T) in its interior. It follows that iejlim g(t,T,yi(T) ,. ,b i) =

g(t,T,y(T),-,b) uniformly on R and

lim IR(g(t,T,yi(T) ,r,bi) - g(t,T,y(T) ,r,_))_i(dr;T) =
ieJ

i

lim
ei(t,T) = 0 for all t,_ 8 T'. Furthermore,

ieJ
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/
, x T and _(t,o) is integrable;l_i(t,T) I <_ 2_(t T) on T I

therefore, for each t e _,

y(t) = lira Yi(t) =
ieJ

lim I T dTIR(g(t,T,yi(T), r,b i) - g(t,T,y(T),r,b))_i(dr;_)
ieJ

+ lira I T dT _ g(t,T,y(T),r,b)si(dr;T)
ieJ

= lira I T dT _ g(t,T,y(T),r,b)_i(dr;T)

ieJ

= I T dT IR g(t,T,yCT),r,b)_ (dr;T) = IT f(t,T,y(T),_(t) ,b)dT ,

since the function (T,r) + g(t,T,y(T) ,r,b) e _ (as defined in §3).

Thus 9(t) = F(y,;,b)(t) for t e T/. By redefining 91

if necessary, on T - T/, we can assert that y = F(y,;,b) and

thus the set of solutions of y = F(y,a,b) is nonempty and

sequentially compact in _/ x _ # x B. Since yJ = cJ(y,_,b)

(j = 1 ..... m) for every solution_ (y,c,b), the yJ (j = 1 ..... m)

are constant, and B 1 is closed, it follows that there exists

a minimizing relaxed solution. QED

_0' _),_.,:/I,3
6.4 Proof of Theorem 3.3. By Assumptions C3,1. I) ^ [g, Theorem 2.4,

p. 631], the set _# is a dense subset of _#. There

Mexists, therefore, a sequence {Pi}i=l in # converging to

_. By (3.3.1), there exists an integer i 0 and a sequence

{Yi }l=i 0 in _ such that Yi = F(Yi' Pi' 5). It~ follows_i then,

in the proof of Theorem 3.2, that there exist y eas

and a sequence j .... u that lim Yi = y' _ wi = _
ieJ ~ieJ_

and y = F(y,_,b ). By the uniqueness assumption, y = y.
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Thus lim o j (Yi' Pi' 5) = lim yl3. = y j (j = 1 ..... m)

ieJ

J (j = i, ..,m) are constant. QED
the Yi

since

7. Proof of Theorem 4.2. We shall use the notation and the

assumptions of §4. We also set,for a fixed choice of

bij (i,j = 1 ..... m) in B and _i9(i,j = 1 ..... m) in _'#,
i

for all m _ e _, v e E n, y g _, and t £ T,
and

m •.

(ma) = 5 + Z m 13 (bij - 5),
i,j=l

m •

( 0 ) = _ + Z _13 (_ij - _) '

i,j=l

f(t,T,V, _) = f(t,T,V,a(_;_[_), b(_U)),

F(y,_ _) (t) = /f(t,T,y(T),_C)dT .

Lemma 7.1 Let bij and _ij(i,j = i, .... m) be fixed. Then
in some neighborhood F of (9,0")

÷ F(y,mm) : ix _ + _ is continuous_and has a derivative(y,_U)
%2

_yat (y, 0 _), the partial derivative exists and is conti-

nuous om r, and the following relations hold:

c,:l= ST vCt, ,yC  ,  l yC+Id+

F U(y,O ) (t) = (t,_,y(_),O{3)d_ (t £ T, y E ),

and

(Fy(y,0_')_y) (t) = I T k(t,T)_y(_)dT (t e T, Ay e _),

ll(Y,0_ (t) = ITf(t,T,y(T),GII(T) - _(w),b)dT +

f T Df(t,T,y(T), _(T), 5; bll - 5)dX (t e T).
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Proof: We first consider the case = LP(T, E n) for

1 < p < _. Let y e _/ and w_l be fixed. We observe that
~

the function (t, _) ÷ f(t,T,y(T),_i_) is measurable on

T x T and llf(t,T,y(T),_ _;) IPdt <

ll_0(t,T) Ip (i + ly(T)18)Pdt _< I_0(-,T)I pP (i + ly(T)18) p < _

for almost all T e T. Thus the function t ÷ f(t,T,y(T),_)

belongs to LP(T,E n) for almost all T e T and [9, Lemma 16,

p. 196] T + f(-,T,y(T),_ is a measurable function from

T to LP(T, En). Furthermore, T ÷ 1 + ly(T)l 8 e LP/8(T)

and T ÷ 140(.,T) Ip £ LP/(P-8) (T) ; hence, by H61der's inequality,

flf(.,x,y(x),_)Ip dT <_ll_o(.,x)lp (i + ly(x)IS)d_< _.

Thus T + f(',T,y(T),_ _) is an integrable function from T

and _e _,

to LP(T, E n) for all y e LP(T, En) _ and F exists on

LP(T, En) x _ .

Now consider the continuity of F and the existence and

of Fy. We have, for fixed y e _]_ and _u e _,continuity

and for all Aye ,

(7.1.1) F(y + Ay,_ _) (t) - F(y,_) (t) =

/{f(t,T,y(T) + Ay(T), _)- f(t,T,y(T),_)}dT =

/fv(t,T,y(T ) + 8(t,T)Ay(T),_)Ay(T)dT a.e. in T,

where 0 < 8 (t,T) < i, and we may assume (using essentially

the argument in [13, Lemma 18.1, p. 177]) that (t,T) + 8(t,T)

is measurable. Furthermore,
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Ifv(t,T,y(T) + B(t,T)Ay(T),_)I <_

(i + (ly(Y)I + IAy(T) l)_)$1(t,T) ;

hence

/Ifv(t,T,y(T) + 8(t,T)Ay(Y),_)IPdt <

(1 + (ly(_)l+ IAy(_)I)_)PI_I(',+)I_

It follows that t + fv(t,T,y(T) + 8(t,T)Ay(T),_)

belongs to LP(T,E 2 ) for almost all T e T and
n

IF(y + AY, _) - F(Y,_m)l <
p --

/(i + (ly(T) I + IAy(T)I)_) I_I(.,T) Ip IAM(T)I aT

we can easily verify that, for a fixed y in _/, the

coefficient of IA y(T) I in the integrand on the right has an

L p/(p-I) norm bounded by some constant c I for all Ay in

the unit ball of LP(T,E n).

We conclude that

lg(y+ _y,_Q) - ;(y,_)Ip <_Cll_ylp

for all Ay _ LP(T, En) and _ e _. Thus y + F(y,_

is continuous at every y, uniformly in m_e _.

Our previous argument shows that the function

Ay ÷ _l(Ay; y) = /fv(',_,y(T),_H)Ay(T)dT is a bounded

linear operator on LP(T, E n) for every (y,_m). Relation

(7.1.1) now yields
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(7.1.2) I(F(Y + Ay,_% - F(y,m_) - _-(_Jl(AY; y))(t) I <

< I #(t x,y(r),=,_)lIAy(r)]dr.Sup[g: (t'r'y(r) + 8(t'r)AY(r)'r_l) - gv '

Rx9

As Ay converges to 0 in L P(T, E n), hence also in measure,

the coefficient of IAy(r) I in the integrand on the right

converges to 0 in measure, as a function of T, for almost

all t e T. This coefficient is also bounded by a(t,T) =

_l(t,T) (2 + Iy(T)I s + (ly(r) I + IAy(r) l)a), and we verify

that t + Is(t,-)Ip/(p_l ) belongs to LP(T). It follows,

applying H_ider's inequality to the right side of (7.1.2)

and then taking the LP-norm with respect to t, that

lim

I_yl + o
P

IF(Y + Ay,_) - F(Y, _°E) - 2_i(Ay; y) Ip/IAylp = 0

for every y e LP(T, En), uniformly in 0 e _ ; hence

/_(Ay; y) = Fy(y, _)Ay (Aye LP(T, En)), and

Fy(y,_ is the operator Ay ÷ IT fv(-,r,y(r),_)Ay(r)dT .

Thus _y(y,_=z) and Fy(y,0") have the form indicated in the

statement of the Lemma.

The argument we have used to prove the existence of Y

via inequality (7.1.2) and Assumption (4.1.3) can be

used to show that

IFy(Yl '_) - Fy_2 '_) ÷ 0 as Y2 ÷ Yl in , uniformly

in _m Thus y + F(y,_) and y ÷ Fy(y,_) are continuous

at each y, uniformly in _ e _. Similar arguments show

that _m ÷ F(y,_O) and _ + Fy(y,_)
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are continuous for each Y e i' whence we conclude that

(y,_ ÷ F(y,_Q) and (y,_) _ _y(y,_) exist and are continuous

on "_oQx _. Finally, the existence of "Facial(y, 0 !::1) follows

from that of f _(t,T,y(T),0 O) and the bounds in (4.1.4).

Thus (y,_) + _(y,_S) has a (total) derivative at (y, 0_).

The same conclusions can be reached by similar arguments

when _ = C(T, E n) . QED

a 7.2 The mapping I - Fy(y, _, 5) is a linear homeo-

I morphism of-_ onto _, and statement (4.2.1)is valid.

Proof: We have shown in Lemma 7.1 that

(Fy(y, _, 5)_y) (t) = /k(t,T)Ay(T)+dT (t e T, Aye [L).
v

By AssUmption 4.1, k is measurable on T × T and Ik(t,T) I

is bounded by _(t,T) = (i + ly(T)lU)_l(t,T) for _= LP(T, En).

We verify then, as in Lemma 7.1, that /I_(" ,T)IP/(P-I)dT <
oo e

It follows [|_, p.518] that Fy(y, _, 5) is a compact operator

on LP(T, En). Similarly, if -bl= C(T, En), the family of
v

functions t ÷ Ik(t,T)Ay(T)dT corresponding to all Ay such

that Max IAy (t) I < 1 is uniformly bounded and has the common

teT

modulus of continuity _. Thus, in both cases, Fy(y,_, 5)

is a compact operator. It follows, therefore, from (4.1.5)

that I - Fy(y,_,5) is a linear homeomorphism of _/ onto

J.

_ [|_, Theorem 5, p. 579].

Let K = Fy(y,_,b) and K* = (I - K) -I - I.

For _ = LP(T, En), the argUments of [l_,pp. 157 - 160]

V"

(applying to the case n = i, p = 2) can be suitably generalized

to prove that K is an integral operator such that

g "(K* Ay)(t) = /k* (t, T) _y (T)dT (t _ T, Ay e ), where k is as
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described in (4.2 .i). (These arguments, in their generalized

form, are based on approximating the function T ÷ k(',T)

in LP/(P-I) (T, LP(T, En)) by finite sums of the form

_j(T)Sj(')). Finally, since k_ (i = 1 ..... m) are independent
3

of t and K = K + KK , the k*_ (i = l,...,m) are also
3

independent of t.

2_ En) * ,
For = C(T, , we observe that since K = K + KK

and K is compact, so is K . There exist, therefore [15,

Proposition 9.5.17, p. 665], a measurable k # = (k#_) (i, j = I, .... n)

on T x T and a nonnegative regular Borel measure _ on T

such that

(K _y) (t) = Ik#(t,T)_y(T)_(dT)

and Sup I T Ik#(t,T)l_(dT) < _.

teT

(t c T, by e -_

Our conclusions about k

will follow directly from the Radon-Nikodym theorem once

we prove that, for all t e T, the measure A + I A k#(t,T)_(dT)

is absolutely continuous with respect to our original measure

A + I A dT. This we can do by observing that if K _Yi _ 0

in %_ , so does K Ay i = (I + K )KAy i ; and then considering

any sequence {A i} of Borel sets in T such that IAil i+_'-4"0

and "approximating" their characteristic functions with continuous

functions a i such that 0 _ ai(t) _ i, ai(t) = 1 on C i ,

ai(t) = 0 on T - G i , where Ci CAi CG i , C i are closed,

G i are open, and _(G i - C i) + I G i - Cil + 0 as i + _ QED

7.3 Completion of proof of Theorem 4.2. Lemmas 7.1 and 7.2

show that Theorem 2.3 is applicable to the control problem as

defined in §4, and that statement (4.2.1) is valid. We have,

for q = (0,b), Ull = o ,bll = b,
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and

DF(y,q; q - q) = DF(y,_,b ; (o,b) - (a,b)) = F ll(Y, 0)

ci(y,q) = Fi(y,q) (i = 1 ..... m).

Let K be the linear operator on _/ defined by k and

let _ = (l,0 ..... 0)£ E n. Then K = (I - Fy(_,q)) -I - I

and, applying Lemma 7.1, relation (2.3.2) can be rewritten as

_'{Fy(y,q) (I - Fy(y,q))-lDF(y,q; q - q) + DF(y,q; q - q)}

(7.3.1)

= _- (I + K )DF(y,q; q)

m

j=l
I j /T{f j (8,y(8) ,_(8) - _(8) ,5) + Df j (8,y(8),_(8) ,b;b-5) }de

+ mz nz li/TxT k*i(T){fJ(T'8'Y(e)'g(@)-_(e)'_)+DfJ (T'8'Y(8)'_(e)'5;b-5)}d
i=1 j=l ]

=/TdS/T _(T)-{f(T,8,y(e) ,_(8)-_(@) ,5)+Df(T,e,y(8) ,_(8) ,b;b-_) }dT

= I T Hl(g(e),e)d8 - I T Hl(_(8),8)d8 + H2(b) >_ 0

J#for all (o,b) e _ × B. In particular, for _ = _,

H2(b) _ 0 = H2(b) for all b e B.

It remains now to prove relation (1). Let _'_ = {pl,P2 .... },

i _ {i, 2,..}, E be an arbitrary measurable subset of T,

b = 5, and o(t) = Pi(t) for t e E, o(t) = _(t) for

t £ T - E. Then relation (7.3.1) yields

I E {Hl(Pi(@),8) - Hl(_(Q),e)}d8 > 0,
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where Hl(r,8) = Hl(S r ,B) and s r is a measure concentrated

at r with mass i. It follows that for each i there exists

a subset T. of T, of measure ITI, such that
l

Hi(0i(8),8) >_ HI(_(8),8) for all 8 e T i.

Then, for T/= _ T i ,
i=l

(7.3.2) Hl(r,8) = I T _(T).g(T,@,y(8),r,5)dT > HI(_(8),8)

for all 8 e T / and r e R (8). We verify, using properties of

k described in (4.2.1) and the bounds on ,g described in

Assumption (4.1.4), that T + _(T) • g(T,8,_(e),r,5) is

bounded for all r and almost all 8 by an integrable function

of T. Since, furthermore, it is also continuous in r, we con-

clude that relation (7.3.2) is valid for almost all 8 and

all r E R *(8) and, integrating both sides with respect to

any s e S (8), that relation (I) is valid.

When R#(t) = R on T, we may choose as _ any set

of constant functions from T to R whose images form a

dense subset of R; then R (t) = R and S (t) = S for all

t e T. QED
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8. Proof of Theorem 1.3.5. Those parts of Theorem 1.3.5 that

refer to the existence and necessary conditions follow directly

from Theorems 3.2 and 4.2 whose assumptions are weaker. The

statement asserting the existence of "approximating" sequences

{pj} and {yj} will follow from Theorem 3.3 if we can prove

that the equation y = F(y,p,b) admits at least one solution

y in LI(T,En ) for each p This last statement follows

from the fixed point theorem; indeed, for each p, the mapping

y + F(y,p,b) is continuous in C(T,E n) and, because of the

boundedness and the uniform continuity of g, the image of this

mapping is contained in a convex and compact set of functions in

C(T,E n) with a common bound and a common modulus of continuity.

QED
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by Jo Warga

i. Introduction . We consider a class of variational problems

defined by the Uryson-type integral equation

y(t) = (yl(t) ..... yn(t)) = I g(t,T,y(T),p(T), b)_(dT)(teT)

T

where p is chosen from a given set _ of "original" (unrelaxed)

controls and b from a given convex set B of control parameters.

We have investigated, in [i] , a related problem in which the

set _ was imbedded in a set _ of

measurable relaxed controls, and have discussed the existence of

a minimizing relaxed control, its approximation by original

controls, and necessary conditions for a relaxed minimum. Since,

as it is well known from the control theory of ordinary differentia

equations, the existence of a minimizing original (unrelaxed)

control cannot be assured, except under very restrictive conditions

we begin the present study with the a priori assumption that there

exist an original control p s _ and a parameter 5 e B that

yield a minimizing solution of the variational problem in _× B.

We then show, applying certain results of [2] , that the necessa_

conditions for minimum derived in [i] (generalizations of the

Weierstrass E-condition and of the transversality conditions) re-

main essentially valid in the present context. Our present

results are limited to the case where T is the closure of a

bounded open set in the Euclidean i-space E£ and _ is

absolutely continuous with respect to the Lebesgue measure (wherea

in [i] T was only assumed to be metric and compact, with an

*This research was supported by N.A.S.A. Grant NGR 22-011-020.
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appropriate measure); within this context, however, the present

results generalize the necessary conditions of [i, Theorem 4.2]

in that the given class of controls may, but need not, consist of

relaxed controls and the remaining assumptions are also slightly

weaker.

References to other related work can be found in [i].

2. Necessary conditions for minimum. Let T be the closure of

a bounded open subset of E£ , R a metric space, B a convex

subset of a re_l linear space, B 1 a closed subset of E m ,

n _ m , g = (gl ..... gn) , and (t,T,v,r,b) + g(t,T,v,r,b) :

T × T x E x R x B + E We assume that gl(t,T,v,r,b) =
n n

g1(T,v,r,b) (i = l,...,m) are independent of t.

For _: T ÷ R , Pi: T + R (i = 1 .... ,k) and disjoint

subsets A 1 ..... A k of T , we define P = [Pi , Ai(i = 1 ..... k); _] :

T ÷ R by p(t) = Pi(t) for t _ A. (i = 1 ..... k) and p(t) = _(t)
k l

for t e T -U A i Let _ be any class of Lebesgue measurable

i=l

mappings from T to R with the property that, for every set

A that is a finite or denumerable union of intervals in E£ ,

(Pl e_'p2 e_) implies [Pl ' A ; p2 ] e _.

Let p' be a Lebesgue integrable scalar function on

T (viewed as a subset of E£) , with p' (T)>0 on T , and let

be a positive measure defined on the class of Lebesgue measurable

subsets of T by the relation p(A) = /p' (T)dT , where dT refers

A

to the Lebesgue measure in El . Let _ be either the Banach

space LP(T , P ; E n) (of functions from T to E n) for
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1 < p < =

T to E n)

equation

or the space C(T , E n) (of continuous functions from

, each with the usual norm. We consider the integral

(2.0.1) y(t) = f g(t,T,y(T),p(T) ,b)_(dT) (t e T)

T

for (p,b) E _)'x B. A point (y,p,b) e _#' x _'_ x B satisfying

equation (2.0.1) is an "admissible" solution if (yl,y2,...ym) e

B 1 (observe that yi (i = l,...,m) are independent of t)

An admissible solution (y,p,b) is a "minimizing" solution if

-i yly _ for every admissible (y,p,b).

Our purpose is to derive conditions satisfied by a

minimizing solution (y,_,b) that generalize the Weierstrass E-

condition (the maximum principle) and the transversality conditions.

We shall use the term "measurable" in the sense of the

Lebesgue measure on E£ when referring to subsets of T or

functions on T ,and in the sense of the corresponding

product measure with respect to T x T. We represent by lal

the norm of an element of a normed linear space. If _ and

are Banach spaces, FG_ and x+h(x):F ÷J , we define

the derivative h x (x I) as a linear operator from _ to J

such that lh(x) - h(x I) - hx(X I) (x - Xl) I = o(IX -Xll) for

all x £ F . We denote by h(x,y ) , h x , hy the derivative

and the partial derivatives, respectively, of a function

(x,y) + h(x,y) from a subset of a Banach space to a Banach

_.............. mh_ s_.n__ho! T represents the identity oDerator_ on

g
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"3/,r.,, ) ,:helinearspace boundedlinearoperatorsfrom
a Banach space_ to a Banach space _ with the metric topology

induced by the operator norm, A O the interior and A the

closure of A , and eO an array (ij)(i , j = 1 ..... m). If

h: _ x B + _ , _here _ is a Banach space, we write

Dh(x , b I ; b - b I) for the one-sided derivative

1

lim _(h(x , b I + _(b - b I)) - h(x , b I)).
_÷+0

Assumption 2.1. For every fixed choice of b O , with elements

b 13 e B , the following conditions are satisfied:

(2.1.1) there exists 0 e (0 , i/m 2] such that, for
max

_(b D) = 7= {8_i0 _ @ij _ 8max } _ Em 2 , the function

(t , T , v , r , 8 Q) + g#(t , T , v , r , S _) =

m . .

g(t , T , v , r , 5 + Z 81J(b lj - 5)):

i , j = 1

T x T x E x R × _ + E has a derivative with respect to
n n

(v , _) everywhere, and g# , g# and g_ are measurable in

(t , T) for every (v , r , 8 a) and continuous in (v , r , 8 D)

for every (t , T) ;

(2.1.2) (I) if _ = L p_ , _ ; E n) then there exist

measurable positive _o and _i on T x T and numbers

and 8 such that 0 < _ < p-i , 0 _ B < p ,
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I { I I_o(t , T) IPp(dt)} 1/(p- B)P(dT) < _ ,
T T

,I_i(t , T) ip/(p. - 1 - _)p(dT)}(p - 1 - _)p(dt) <I { I
T T

I { I l_l(t , T) IPp(dt)} I/(p - 1 - e)p(d_) < _ , and, for
T T

r,8 u) e T x T x E n x R x_,all (t, T, V,

Ig(t , • , v , r , e°)l _ (1 + IvlB)_o(t , _) for

= g# and g_D

and

Ig_(t , T , v , r , B_) I _ (i + ]vle)_l(t , T) ;

(2) if _= C(T, E n) then there exist a compact set D

in E containing {y(t) It e T} in its interior and an
n

integrable scalar _ on T such that, for _ g# # and= ' gv '

g_a , we have

]_(t, T , v , r , 8n)l _ _(T)

for all (t , T , v , r , 8° ) e T x T x D x R x _. Furthermore,

there exists a positive function h + #(h) . such that

#
lim _(h) = 0 and, for t I , t 2 e T and _ = g# and gv '

h÷+0

I Sup l_(t I , T , v , r , 8O) - @(t 2 , T , v , r , 8Q)I_(,
D x R x_

¢(ItI - t21);
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(2.1.3) for k(t , T) = gv(t , T , y(T) , p(_) , b)

on T × T , the integral equation

w(t) = I k(t , T) w(T) _(dT) (t e T)

T

has only the solution w(.) = 0 in _ °

2.2. Resolvent kernel. It follows from Assumption 2.1 (and

can be proven exactly as in [i , Lemma 7.2]) that there exists

a measurable real matrix-valued function k = (+ ) (i , j = i ..... n

on T × T (a resolvent kernel of k) such tha_ for every h e_

the relations

w(t) = I k(t , T)W(T)_(dT) + h(t)

T

(t e T)

and

w(t) = I k (t , T)dh(T)_(dT) + h(t) (t e T)

T

are equivalent in _, k_i(t, T)= k_i(T) are independent of t

for i = l,..,m , I { I Ik*(t , T)IPp(dt)} I/'(p - i) _(dT) < ®

T T

for %= LP(T , _ ; E n) and I Sup Ik*(t , T) I_(d_) < _ for
T

t e T
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C (T,E n) •

We can now state our basic results.

Theorem 2.3. Let (y , p , b) be a minimizing solution, let

,

Assumption 2.1 be satisfied, and let k be a resolvent kernel

of k. Let _ be a denumerable subset of _containing 0 ,

R*(t) = {0(t) Ip e _ _} (t e T) , K l a convex subset of some

Eq , _ e K 1 , and _: K l ÷ B I a continuous mapping with

a derivative at _ and such that _(_) = (91,...,_m) Then

either _(_)_ -- Min _(_)_ j

_ e K I

or there exist a nonvanishing X = _i ,.., I m) e E
m

and

y _ 0 such that, setting

= (ll,..,Im,0 ..... 0) = (I , 0 ..... 0) e E n ,

m ilk. i IJ/_(T)_J(T) = E . (T) +

i = 1 3

(T e T , j = l,...,n) ,

E(I) = (EIcT) .... En(T)) (T e T) ,

Hl_r' , T) = / _(t)_.g(t , T , y_T; , r
T

, b)_(dt) (T e T , r e E

and

H2(b) = I _(t)-Dg(t,T,9(T),_(w),5 ;b-b)w(dt)_(dT) (b e B),

T x T
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the following conditions are satisfied:

(The Weierstrass E-condition)

(i) HI(P(T) , T) = Min R* Hl(r , 7) for _-almost al
r e (T)

T in T ,

(Transversality conditions)

(2)
Min H 2 (b) = H 2 (b) = 0 ,
b e B

and

(3)
(y61 - I) #_(_)_ = Min (y61 - I)-#_(_)_ ,

_ e K 1

where 61 = (i , 0,..,0) e E m

In particular, if R is separable and _contains all

constant functions from T to R , we can replace R (T) by

R in relation (1).

3. Proof of Theorem 2.3.

_r sequences, admissible controls, the sets T_*

and R (t). Let IAI = I dT represent the Lebesgue measure of

A

ACT , diam(A) the diameter of A and S(A , 6) the closed

6-neighborhood of A. A sequence {Mj}_ = 1 of closed subsets
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of T is "regular" at t (covers t in the sense of Vitali

[3 , p.212]) if diam(Mj) ÷ 0 as j ÷ _ , t E M9 , and

IS(Mj , 3 diam(Mj))J4 _IMjl (j = 1,2 .... ) for some e > 0.

For any p-integrable function T ÷ f(_) from T into

w
some Banach space, let T' (f) be the set of all the points t

in T such that If(t*) I < _ and

i

_ _mjJ M.
3

f(T)_(dT) = f(t )

for all sequences (Mj} that are regular at t . Since

= lim 1 I f(T)_' (T)dT/ 1 I _' (T)dT , it is well

M TIM
3 3

known (proof as in [3,Th. 8, p. 217]) that IT'(f) I = JTI; hence

t
(T (fi) = _(T). We write T' (fl f2 .... ) for

T' (fl) /"iT' (f2)Fq ....u U

If _= LP(T , _ ; E n) then it follows from Assumption

2.1 that, for all p e _, the function g(p) defined by

_(p) (_) = g(', T , y(T) , p(_') , ]3) (T E T)

is a u-integrable function from T to LP(T , U ; En). We then

set

(3.1.1)
T* = g{_ T' (_'(p) , _(;))_,T ° .

P II
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If _ = C(T , E n) then, for all p e _, the functions

gl(p) and g2(p) from T to E m , defined by

i • gigl(p) (T) = (T , y(T) , p(T), b) (i = l,..,m,T e T)

and

i n

g2 (p) (T) = I Z

T j = 1
k*ij(t)_ -" (t , T , y(T),p(T),5)_(dt)

(i = 1 .... m,T e T)

*i

are _-integrable (since t+k j(t) are _-integrable on T for

i = 1 ..... m and Ig(t , T , y(T) , p(T) , 5)I(_(T) for all

t , T e T). We then set

(3.1.2) T
T'_(_l(p) 'g2̂ (p)'01(5) 'g2̂ (5),_) /_ T ° •

Thus, in both cases, IT*I = ITI and _(T*) = _(T).

We also set, for each t e T ,

R (t) = {p¢t*)IP e _}

3.2 The collection J_ and the function G. Let

Nk = _ (2-i 2-i + i] (k = 1,2,..,m 2) ,
0_iSk(mod m 2)

8>0, [0,8] j = [0,8] x...x [0,8] (j times),

Nk8 = (Nk/_ [0,8])x[0,B]£ - 1 , and Yk(t) = Sup _((t+Nk_)_T °) (k=i,.._2,1
y_0 i
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We define Nk(t , _) (t c T ° 2, k = l,...,m , e > 0) as

(t + Nk8 ) n T ° , where 8 is chosen so that _(Nk (t,u)) = Min(_,Tk(t)).

We set = {Nk(t , _) It e T , e > 0} (k =-l,2,..,m 2)

and _= {_klk = 1,2 ..... m2%.

We can easily verify that, whenever {ej}; = 1 is a

sequence decreasing to 0, the sequence {Nk(t , _j)}_.3= 1 is

* T ° 2regular at t for every t e T C and k=l,2,..,m .

For any fixed choice of t 13 e T , p 13 e Re , and b lj e B

(i,j = 1 .... m) , let _=_(b l) (as in Assumption 2.1) , and let

= _(t") = {_a i i3 _ 0 (i,j = 1,..,m) and the sets

Nmj - m + i (tij ' ij) are disjoint } .

We set p, (*) = [pij , Nm j _ m + i (tij ' ij)(i,j = 1 ..... m); 5] and

define g# as in Assumption 2.1. Finally, we verify as in

[i , proof of Lemma 7.1] that there exists a neighborhood

= Fy x F_ x F 8 o_ (y , 0",0 o ) in _x _ ×_ such that the
F

relation

G(y,_",8 a) (t) = [ g#(t,T,y(T) ,p' _,.B) (T) ,8")_ (dT)

T

defines a mapping G: F ÷_.

Lemma 3.3. The functions (y,_a, 8°) ÷ G(y,_9,8°):

(t e T)

I" +2 and (y,_,8 _) ÷ Gy(y,_°,8_): F +_(_,_)
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exist and are continuous. We have, for all (y,_=,8") £ F and

Ay e_,

(3.3.1) (Gy(y,_a,B°)Ay) (t) = I g#(t,T,y(T) ,p' ( 1_) (T) ,ea) Ay(T)_(dT)
T

(t e T).

Proof. The arguments of [i , Lemma 7.1] show that,for fixed

+ Gy(y x F 8 + _(_,_) exists,_a, the function (y,8 _) ,_",8"): Fy

is continuous, and satisfies relation (3.3.1). Now let _ and

_; be in F and set MI, 2 = {t e TIp' (_) (t)_p' (_2) (t) }. Then

m ij ij
Z I_ 1 -_2 1 and, by (3.3.1),

w(MI'2) _ i,j = 1

( (Gy (y,w I, 8 ° )

D G

Gy(Y,_2,8 ))Ay) (t) =

= I
M.
±,2

(g#(t,T,y(T) ,p' (_0I) (T) ,8")

- g#v(t,T,y(T),p' (W_) (T),81)"Ay(T)]/ (dT)

((y,_,8*) E F , Ay e_ , t e T)"

For _= LP(T,p;En), we have, therefore, in view of Assumption (2.1.2),

AI, 2 = I(GyCy,_[ , e') - Gy(y,_,Bn))Aylp ¢ I _ I_i(.,x)IpIAycT)IuCdT)
MI,2

where the function T + I_I(',T) I

to L p/(p - i) (T,z); hence

= { I ' 'l_l(t,T) IPp(dt)} I/p belongs
P T
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i {f I_1( ,_)lP/(P-1)_(dT)}I-1/pAI,2 " iAyUp.

MI,2

" ÷ , it follows that Ai,2/i_YlpSince _(M 1 2 ) ÷ 0 as "_2 _i °
t

also converges to 0, uniformly in (y,8 G) Thus, when

_= L p(T,_;En), the function a + Gy (y,_R,8°): F _(_, _)

is continuous, uniformly in (y,8 a) , and we conclude that

the function (y,_°,S°) ÷ Gy(y,_°,8 D) is continuous in _x _ × _.

For _= C(T , E n) , we have

I((Gy(Y,Wl,ee) - Gy(Y,e2,e°)))Ay) (t)I_ IM1,2_Cx)uCdx)IAYI_ •

and the argument can be continued as in the previous case. QED

Lemma 3.4. Let n.v_= LP(T,_;En) " For fixed y £ Fy , the function

× F 8 +_(Em2,_) exists and(_°,8°) Gsa(y,_',%m) : F

is continuous, and we have

(3.4.1) Gs_(y,_",8") = I g_, (',T,y(T),p' (_°),8")_(dT) (t e T).
T

Proof. The existence of GS, (y,_a, Sr)

the continuity of 8 ° + GBo(y,_°,8 °)

and, in particular, the continuity of

The continuity of _G + G_ (y,_°,8°)

, relation (3.4.1), and

follow from Assumption (2.1)

8 # ÷ g_o and the bounds.

, uniformly in (y,8 a) ,
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can be shown by the same arguments that were applied in Lemma 3.3,

with GBo replacing Gy. QED

Lemma 3.5. Let _= LP(T,_;E n) and let 0" be the origin

of Em2 . Then the function (y,_',8 u) ÷ G(y,_',8 m) : F ÷ _ has

a (total) derivative at (y,0B, 0 ") (relative to F), and

(3.5.1) G ij (9,0_,0 $) = g(.,tiJ,9(tiJ) ,pij (tiJ) ,5) -

- g (. ,tiJ ,9 (tiJ) ,_ (tiJ) ,5)

Proof. If follows from the bounds in Assumption (2.1.2)

T ÷ Ig#(',T,y(T),p' (_') (T),85) I is _-integrable for all
P

(y,_$,8 $) e F Thus

in

that

GCg,_',e e) = ITg#(',_,gCT),p' (_e) (T)'B°)_(dT) in

and

G(y,e°,0 °) - G(9,0",0" ) =

m

f
i,j=l Mij

(g(',T,9(T),p13(_),5) --

g(.,T,7(T) ,5(T) ,b))_ (dT)

for Mij = Mij(_ ij) = Nmj_m+i(tiJ,_iJ) (i,j=l .... m). Since,

for each fixed i and j , the sequence {Mi_e k) }_k=l is

regular at t 13 if Uk ÷ + 0, the Mi_ are disjoint, t _ £ T*

_(%j)=_(Mi_) = ij for sufficiently small _lJ(i,j=l, .,m)• . • ,
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relation (3.5.1) follows directly and we also conclude that

a ÷ G(9,_o,0 e) has a derivative at 0 e.

+ × F 8 +_(Em2, _)Since, by Lemma 3.4, (_°,0°) Ge#(y,_D,e°):F

is continuous and there exists a convex neighborhood of

(0 4, 0 °) relative to F_ × F e , we conclude that the function

(_°,8a) + G(y,_°,8 g) has a derivative at (0e,0°). Finally,

Lemma 3.3, (y,_,8") + Gy(y,_°,8_): F +_(_,_) isby

continuous; hence (y,_°,B°)÷G(y,_",8") has a derivative at

(y,0 °,0") . QED.

3.6 Proof of Theorem 2.3 for _= LP(T,E n) (l<p<_).

By Lemmas 3.3 and 3.5, the function (y,wB,8 a) + G(y,_S,8 °) :

F + _ has a continuous partial derivative with respect to y and

a (total) derivative at (y,0°,0 f) . Furthermore, Assumption (2.1)

implies (see [l,Lemma 7.2] for details) that I-Gy(y,0_,0 _) is

a linear homeomorphism of _ onto _ and that

(3.6.1) (I-_y(y,0°,0e)) -I = I + K ,

where

(3.6.2) (K Ay) (t) = I k (t,T)Ay(T)_(dT) for all
T

t e T and Ay e_"

It follows then from a variant of the implicit function theorem

_u_**_ _o_.._= _., same arguments as -.._ •r4,p..... _%1%., and from
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the representation of Gy,G06 and G Q in Lemmas 3.3, 3.4,

and 3.5 that the equation

y = G(y,_°,O a)

has a unique solution D(_a,O ¢) = (Ql(_°,O6) ..... n n(_4, Oe))

in _ for all (_°,0°) in some neighborhood A of (0D,0 _)

in F x F o such that the function (_°,0°) + n (_,O_ is

V

continuous in A and has a derivative at (0_,0 °) , and

(3.6.3) n i j (0°,0 °) = (I-% (y,0°,0 °))-l(g(.,tij,9(tij),pij (tiJ) ,_)

- g(.,tiJ,9(tiJ),_(ti9),5)) .,

(3.6.4)

Now let a function

be defined as follows:

if the equation

o - o o -i # ,Y(3),_(_)_°)_(d
_oij (0 ,0 °) = (I-Gy(y,0 ,0 _ /Tg0ij(-,T

for i,j=l .... n.

(p,b) + _p,b) : _ x _ + E
m

y(t) = I g(t,T,y(T),p(T) ,b)_(dT)

T

has a unique solution y(') in _, we set

(t e T)
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x(p,b) = (yl,...,ym)

(remembering that yi (i=l,..,m) are then independent of t);

otherwiee we set

x(p,b) = (_i + 1,0 ..... 0).

* * _*(t* znWe also set, for all t e T , ) = _= .

m

We observe that, in particular, xi(p' (e_),5 + _,j=iBiJ(biJ-b)

_i (_°, B°) in _ (i=l,...,m) .

We can now verify that (p,b) yields the minimum

of xl(p,b) on {(0,b) c_ x BIx(p,b) _ B1}, that (T*,_*,_

define "local variations for x in _ x B at (5,5)"

according to [2, Definition 2.1, p. 644], and that Theorem 2.2

of [2, p. 644] is therefore applicable. Furthermore, defining

Dx(p,b;t*,r) as in [2,p. 643] , we have

• * i * *
(3.6.5) Dxl(p,b;t ,r) = _i(0",0 #) (i=l,..,m,t E T , r E R

where q is defined by choosing t I_ = t*, p_ such that O_l(t *) = r

and the other tl3,p 13 and b ° arbitrarily; and

(3.6.6) Dxi(p,b;b-b) = q_l_(0w,0 B) (i=l .... m,b e B),

D
where q is defined by choosing bl'li_ and ta,p and the

other b ij arbitrarily.(The symbol Dxi(p,b;b) in the notation of [2]

corresponds to Dxl(0,b;b-6) in our present notation).
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It follows, by [2,Th. 2.2, p. 644], that either

the first alternative of Theorem 2.3 is valid or there exist

a nonvanishing _ in E m and y _ 0 such that condition

(3) of Theorem 2.3 is satisfied,

* * T* * *(3.6.7) _.Dx(p,b;t ,r) _ 0 for all t e and r e R (t),

and

(3.6.8) l-Dx(p,b;_-_) >_0 for all b e B .

Relation (i) of Theorem 2.3 now follows from (3.6.7),

taking account of (3.6.1),(3.6.2),(3.6.3), and (3.6.5).

Similarly, relation (2) follows from (3.6.8), in view of relations

(3.6.1), (3.6.2), (3.6.4), and (3.6.6).

R* *
It now remains to verify the statement that (t) can

be replaced by R if R is separable and _ contains all

constant functions from T to R. In that case we can choose as

_ __eof_containing p and a set of constant functions

from T to R whose images form a dense subset of R. Then

R (_) = R for all T e T and, since r + HI(r,T) is continuous

for all T _ T, we conclude that Min . HI(r,T) = Min HI(r,T).
r e R (T) r e R

3.7. Proof of Theorem 2.3 for _= C(T,En!. The proof of Theorem 2.3

for _= LP(T,_;E n) partly relied on the observation that

G(y,_,8 °) is the _-integralover T of the function
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T ÷ g#(-,T,y(T),p(T),_G): T + _. For _: C(T,En) this need

not be (and in most cases of interest is not) the case since

g# (.,T,y(Y),p(T) ,8 ° ) is not assumed continuous for fixed

z and 8 ° . We can circumvert this difficulty, however, since

we are primarily interested in the first m components of y,

and (yl,..,ym) is constant for every solution y of

y = G(y,_°,Sa). This remark motivates the ensuing arguments.

By Lemma 3.3, the functions G and G exist
Y

and are continuous on F. It follows, therefore, by the implicit

function theorem, that the equation

y = G(y,_a,8 °)

has a unique solution n(_°,8 °) in _for (_,8 °) in some

neighborhood A of (0°,0 °) in F x F 9 and that (_,8 °) ÷ n(wa, O #

A + _ is continuous.

Let K = Gy(y,0_,0°), K = (I-K)-I-I, and let Pm

be the projection operator (a 1,... ,a n) = a + P - a = (a 1,. . ,a TM) :
m

E + E
n m

W -- _ 8a

Lemma 3.7.1. The function (_a'ea) + Pm" (I+K).G(y,_ , ) :

A ÷ E m has a derivative _= (_,.. _m) at (0",0 a) , and

(3.7.1.1) _i. ,_o 8 °, .. #i _(dT) + f k*i(t)
, J=tJg(9_ (T,.y('[),P(T),O Q)

T TxT

g_ (t,T,y(T),p(_),0 i)_ (dt)_ (dT))'Sa+
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_,Z=l(gm i(tk£,y(tkZ),p(tk£),b) + f k*i(t)

T

g(t,tk£,y(t k£) ,pCt k£),5)p (dE)) k£ "(i=l ..... m,_Em2,Bae Em2),

where ;i (k "*il, *i= ... ,k n ) .

Proof. We set H(m °, 0 a) = P_(I+K*)-G(y,_e,8 a) and verify that

Hi(_°,8 °) = f g#i(T,yCT) ,p' (_a) (T),BI)_(dT) +

T

+ f k*i(t).g#(t,T,yCT),p' (_) (T),ea)_(dt)p(dT)

TxT

(i = 1 .... m) .

Assumptions(2.1.1) and (2.1.2) imply that (_a,8°) ÷ HBm(_°,Ba):

A ÷ 2 (Em2'Em) exists, is continuous, and

where

HBe(0m,0B).8°=_- (0°,8°),

is defined as in (3.7.1.1).

We also observe that

m

Hi(e ",0") - Hi(Oa,O ") = Z f

k,£=l Nk£

(gi(r,yCT) ,pk£iT),b)-gi(T,y(T) ,p(T) ,b))_(<

m

Z f p(dT)f k*i(t) • (gCt,T,y(T),pk£(T),b)-g(t,T,y(T),p(T),b))p(dt),

k,£=l Mk£ T
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k£ *

where _£ = Nm£_m+k(tk£,_k£). Since t e T for k,£=l,..,m,

it follows from the definition of T that H _O°,O _) exists and

H o(0e,0a)" o=2.(_o, 0°).

We conclude that H(_o, Sa ) (0°,0 °) = _o QED.

Lemma 3.7.2. There exists a constant c such that

SuplG(9,_',e') (t) - yCt) l _ c(l_°l+lo"l)
tET

for all (_R,SG) sufficiently close to (0",0").

Proof. We have y(t) = G(y,0=,0 °) (t)(tET) and , for all t _ T,

IG(9,_=,_ _) (t) - 9(t)I<_1/
T
(g#(t,_,9(T),p' (=°)(_),e°) - g#(t,_,9(T) ,p' (=5,d

caT)n

m

+1 r. .r
k,£=l _£

(g#(t,T,y(T) ,pkE(T),0 °) g#(t,_,9(_),p(_),0°))_(d_)I

where

a+b ,

k£ k£,
_£ = Nm£_m+k(t ,_ ;. We observe that

because

a _ IT_(T)_(dT)

Ig_0(t,T,y(T),r,8 )l _ _(T) everywhere, and that
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b _< 2 k,Z £=i/Mk _(T)_(dT)

because Ig#(t,T,y(T),r,b) 14 _(T) everywhere. The conclusion of

the lemma now follows directly, remembering that

since

3.7.3

w = (_°,e°),

lira l-_-_I _(T)_(dT) = _(t k£) (k,£=l .... ,m)

_k_,_0 _rM k

t k£ e T CT_(_) (k,£=l .... m). QED

Completion of the proof. We now observe that, for

0 _ = (0°,0 °), and for all w e A ,

n (w) - G(y, w) = G(_(w), w) G(y,w) = Gy( _(w),w)- ( D (w) - y);

hence

-i

n(w) y = (I - _y(_(_),w))

_(W) £ [y, ,](W) ] _. Thus

(G(y,w) - G(y,0')), where

(3.7.3.1) Pm. ( n(w) - n(0') - (I + K )- (G(y,w) - G(y,0')))

= Pm" (((I-Gy(_(w) ,w)) -I- (I-Gy(y,0')) -I) (G(y,w)

- G(y,0'))).

Since w ÷ n(W) is continuous, and so is, by Lemma 3.3,

(Y,W) + Gy(y,w), it follows from Lemma 3.7.2 that the right

hand side of (3.7.3.1) is o(lwl). Thus, in view of Lemma 3.7.1,
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the function w + 9m. _(w) has a derivative at 0' and

1 m)
( q ,--, Fi (0"'00) = (Pm" _ )w (0') = Pm" (I+K)-

•, G( o,o-) (p,o",o°) =_,

where _ is defined by relation (3.7.1.1).

We can now complete the proof of the theorem exactly

as we did in 3.6 for "_- LP(T,_;En). QED
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APPLICATIONSOFHAMILTON-JACOBITHEORY
TOPLANARTRAJECTORYOPTIMIZATION*

ByS.K.Lakhanpal
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Nashville,Tennessee

SUMMARY

Thepurposeof this paperis to studytheapplicationof Hamilton-
Jacobiperturbationmethodsto thedeterminationof theminimumfuel
trajectoryof 8 rocketmovingin aplaneunderacentralgravitational
forceandthethrustof anengine.First, abrief surveyis givenof
theneededtheoremsfromthecalculusof variationssndHamilton-Jacobi
theory.Theproblemis thenformulatedanalyticallyandthemultiplier
rule andWeierstrassconditionapplied.TheHamiltonianis separated
intobaseandperturbationparts. Twomethodsaregivenfor obtaining
a completeintegralof theRamilton-Jacobipartialdifferentialequation
for thebaseHamiltonian.Jacobi'sTheoremis appliedto giveasystem
of canonicconstantsfor thebaseproblem.Theprocedurefor usingthese
constantsascanonicvariablesin theperturbingHamiltonianis then
developed.

II_TRODUCTION

Manytrajectoryoptimizationproblemsareof theMayertypein the
calculusof variations,theclassicaltheorybeingeasilyextendedto in-
cludecontrolvariables.(See,for exsmple,Hestenes,Ref.I1 or2]).
Withdifferentialconstraintsin normalform,themultiplierrulegives
equationsof extremalsascanonicalequationsof ageneralizedHamiltonian.
Jacobi'stheoremthengivesamethodof solutionbasedonfindinga com-
pleteintegralof apartialdifferentialequation.Thistheoryis
stumnarizedbriefly, withoutproofs,in thefirst partof this paper.

Lowthrustrockettrajectoryproblemsareanalogousto perturbation
problemsof planetarytheory,thethrustof theenginebeingconsidered
astheperturbingforce. WilliamE.Miner[3] hasdevelopedthismethod
extensivelyfor threedimensionaltrajectories.Theobjecthereis to
considerthesimplerplanarcaseandto studyalternativemethodsof solv-
ingthepartialdifferentialequationof thebaseHamiltonianinaneffort
to discoversomesimplifications.

_ThisresearchwassupportedbyNASAResearchGrantNGR-43-002-015andwas
doneunderthedirectionof M.G.Boyce.Apartof it wasincludedin the
author'smaster'sthesisinmathematicsat VanderbiltUniversity.
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A planar rocket trajectory problem is formulated with end conditions

sllowing for various missions, including rendezvous with a satellite in a

coplsnar orbit. The base Hamiltonian is taken as the part not involving

thrust. The partial differential equstion for it is linear, and our first

solution uses Lagrange's method for obtaining a complete integral. Jacobi's

equations determining original variables in terms of canonic constants are

used to eliminate the original variables from the perturbing Hamiltonian,

the canonic constants becoming new generalized coordinates and momenta.

The canonical equations of the new Hsmiltonian are then the differ-

ential equations of the extremals.

The second method of solving the partial differential equstions for the

base Hamiltonian is to first transform it by a canonical transformation of

variables and then use Jacobi's method to find a complete integral. The

procedure described above is then repested.

HAMILTON-JACOBI THEORY

Mayer Control Problem

The Mayer problem of calculus of variations involving control variables

may be expressed in the following form.

The problem is to find in s class of admissible arcs

Yi(t), uj(t), t o < t < tl, i = i, ..-, n, j = i, ..., m,

satisfying differential equations and end conditions

Yi = fi (t'y'u)'

Jk(to,Y(to), tl, y(tl) ) = 0, k = l, ..., p _ 2n + 2,

one which will minimize a function

J(t o, Y(to), t I, Y(tl)) •

Here, in the arguments of the functions, y denotes the n-vector

YI' "'" ' Yn and u the m-vector ul, ... , u m . The super dot denotes

derivative with respect to t . Partial derivatives will often be denoted

by subscript variables and sum_nstion by the tensor analysis device of re-

peated indices. In this study admissible arcs will be srcs whose elements

(t, y, Y) lie in a given 2n + 1 dimensional open region R and whose

control variables u are in an open region U . The end points
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(to, Y(to) , tl, y(tl)) of admissible arcs are required to lie in an open

set S, and y, _, u are continuous functions of t. The given functions

fi' Jk 2 J are assumed to have continuous partial derivatives in their

arguments to as high as second order.

First Necessary Condition: Multiplier Rule

The classical first necessary condition can be stated for the Mayer

problem with control variables in the following form. [_]

Theorem 1. An admissible arc E is said to satisfy the multiplier rule if

there exists a function

H(t,y,u,_) = kifi , i = 1,2,...,n,

where k's sre functions of t not simultaneously zero and continuous

along the arc E, such thst the equations

(i) h i = Hy i , _i = -Hxi , Huj = 0 , j = l,..-,m,

are satisfied, if the end point conditions Jk = O, k = i, ..., p, hold,

and if the trsnsversality matrix

II H(t°) + Jto -H(tl) + Jtl -_i(t°) + JYi(to)_i(tl)+ JY'(tl)!

II Jkt° Jktl JkYi (t°) JkYi (tl)

is of rank p. Every minimizing arc must satisfy the multiplier rule.

Solutions of equstions (i) are called extremals, and equations (i)

are called the canonical equations of extremals. They are the Euler-

Lagrange equations for the problem, and the function H is analogous to

the Hamiltonian of mechanics. If, for admissible arcs, y and u are

assumed only piecewise continuous, then Theorem 1 holds between corners

of E.

Weierstrass Condition

The Weierstrsss condition for the Mayer control problem can be

stated ss follows. [4]
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Theorem 2. Along the minimizing arc E, the inequality

H(t,y,k,_) S H(t,y,_,u)

must hold at each element (t,y,k,u) of E for every _ in U.

Thus H(t,y,k,u) is a maximum with respect to the control variables

for a minimizing arc, for which resson this condition is often called the

MaximumPrinciple.

Elimination of Control Variables

An arc along which the determinant IHujuhl _ 0 is said to be non-

singular. It will be assumed that all arcs considered are non-singular.

The equations H = 0 can then be solved for the control variables in
u.
J

terms of multipliers and state vsrisbles_ and control variables can be

eliminated from the Hsmiltonian. This will be supposed done, and the

Hemiltonisn will be written as

H*(t,y,k) = H(t,y,n(t,y,k),k).

It follows that the canonical equations of the extremals can be ex-

pressed in terms of H* . For, if the equations

H = O, j = 1,-.-_m,
u.
J

of the set of equations (1) can be solved for uj = uj(t,y,k), then

H* = H + H u.

Yi Yi uj JYi

H* = H + H u.

ki h i uj jk i

Since H = O, it follows that
u.
J
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H* = H and

Yi Yi Hhi = Hhi

= H*

or Yi = Hh i h i

and = = -H*
{i -Hy i Yi

Hereafter H*(t,y_h) will be denoted by H(t,y,h) because of the equiva-

lence of the two Hamiltonians.

The Hamilton-Jacobi Equation

The partial differential equation of first order

(2) S t + H(t,y,Sy) : O,

is called the Hamilton-Jacobi equation. It has dependent variable S and

n + 1 independent variables t,yl,.-.,y n . The complete solution of (2)

will have n + 1 arbitrary constants. However, one is additive and is of

no importance here, so we shall consider a solution with n independent

constants, no one of which is additive, to be a complete solution.

Theorem3. Let the Hamilton-Jacobi equation (2) have the solution

S = S(t,yl,...,yn_1,'''_m ) depending on m (_ n) parameters _1,-..,_m.

Then each derivative S_

J

equations system

that is,

is a first integral of the canonical Euler

Yi = Hh i hi ;, = -Hy i

SG = constant along an extremal.

J
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Jseobi's Theorem

Theorem _. Let S(t,Yl,--.,yn_Gl,-.-,Gn) be a complete integral of the

Hamilton-Jacobi equation (2), that is, a solution depending on

n-parameters (_l'''''Gn snd having the n bY n determinant IS !_O'(_iy

Also let 6z '''''_n be n arbitrary constants. Then the functions

(3) Yi = Yi(t'al'''''_n'8z'''''8n )' i = l,...,n

defined by the relations Scz'z = 8i' together with the functions k i = Syi,

constitute a general solution of the canonical system

#i ' _i , i = i,..- ,n.
= Hxi = -Hy i

For proofs of theorems 3 and 4 see [5, p. 90].

Hemilton-Jacobi Perturbation Theory

In celestial mechanics the path of s planet is disturbed by the pres-

ence of other heavenly bodies. This disturbing force is very small compared

to the attraction of the sun. The Hamiltonian is expressed as a sum of two

parts; the one which corresponds to the motion of the planet without the

disturbing influence is called the base Hamiltonianj and the one correspond-

ing to the dist*L_bing factor is called the perturbing Hemiltonian. The low

thrust rocket problems in trajectory analysis can be treated in a similar

way, the thrust of the engine being considered as the disturbing factor.

The following theorem shows how to obtain a complete integral of

order n of the Hamilton-Jacobi equation for the base Hamiltonian in case

it involves fewer thsn n k's [6_ p. 29].

Theorem 5. Let H(t,Yl,''',yn,kz,-..,_) be the Hamiltonian for a

dynamical system. Let H ° = Ho(t,Yl,''',yn_kl,-..,kk) , where k < n, be

the base Hamiltonian and let S*(t,Yl,-'',yn,(_l,''',_k ) he a solution of

the Hamilton-Jacobi equation for H ° depending on k independent para-

meters (Gz,''',_)with IS* 1 _ O,i,j = l_2,-..,k. Then
Yi_j .
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order

FromTheorem4 it followsthat

(4) _i = as'1 xi = syi ' i = l,..-,n.

We solve these equations for y's and k's in terms of

HAMILTON-JACOBI THEORY APPLICATIONS

n

S = S*(t,yl,''',yn,_1,.--,_k ) + >7 _iYi '

i=k+l

(_k+l,''',_n) are independent psrsmeters, is a complete solution of

n for the base Hamilton-Jscobi equation.

_'s and B's,

thus Yi = Yi (G'_'t) and ki = ki(_,B,t) , and substitute these values in

the perturbing Hsmiltonian, say H . Now H is expressed in _'s and
i 1

_'s as variables.

On considering S to be a generating function for a canonical trans-

formation with _'s and G's as new variables, it follows that the new

Hamiltonian is St + H, [5, P. 79]. But

S t + H = S t + H ° + HI, and S t + H ° = 0

when S is s complete integral of the Hamilton-Jacobi equation for the

base solution. Hence the H is the Hamiltonian for the total problem
1

in terms of the variables _i' Gi ;

extremals in these coordinates are

_. = H

l l_i

and the canonical equations for

The solution of these equations gives the extremals for the problems with

2n constants of integration [6, p. 27; 7, P. 137]. By the use of the

set of equations (4) we can express the trajectory in terms of y's and

t. This theory can be extended to splitting the Hamiltonian into more

than two parts.

Csnonical Transformation

Suppose the variables y's and _'s are transformed to new vari-

ables q's and p's. If the transformation has the property that for

every Hamiltonian H(t_y,l) there exists s function K(t,q,p) such that
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3K _ _ -SK i = l,...,n,

- 8Pi ' 8qi

then the transformation is csnonical.

It is assumed that the tran_format__on has a non-vanishing Jacobian

I0 Inl
M. Let N denote the matrix I I 01 of order 2n, then the nec-

L'n j

essary and sufficient condition that the transformation be canonical is

that MTNM = cN, where c is s non-zero real number. [ 8 ].

PLANAR TRAJECTORY OPTIMIZATION PROBL_4

A rocket moving in a plane under s central gravitational force and

the thrust of an engine is to achieve a specified mission starting from

a given initial state. The variable angle of thrust, which is a function

of time, is the control variable. It is desired to find the equations

of the path requiring the least amount of fuel.

Assumptions

The path of the rocket is assumed to be in a plane, and hence a polar

coordinate system is used, with origin at the center of the earth. The

coordinate system is fixed relative to the earth and the gravitational

force on the rocket is assumed directed towards the origin. The rocket is

considered as a particle of variable mass. Air resistance is assumed

negligible and thrust magnitude to be proportional to a constant rate of

flow of mass.

Equations of Motion

Let (r,0) be the polar coordinates of the rocket, _ the angle

between the radius vector and the direction of thrust 3 F the thrust magni_

tude, m the mass, c the constant rate of mass flow, and k the

gravitational constant. The equations of motion can then be expressed ss [9]

- r_klr 2 + (F/m) cos _,

(5) r_ + 2_0 = (F/m) sin _,

= -C.

The theory of the Lsgrangian

L = (_2 + r2_)/2 + k/r,
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for the unit mass two-body problem without thrust, suggests defining

u = _L/B_, w = _L/_e.

Thus u = 9 , w = r2e,

and u is radial velocity, while w is rv, where v is tsngentlal

velocity. The equations of motion (5) then become

= w2/r S - k/r a + (F/m) cos (_,

(6) _ = (r F/m) sin (_,

= u, e = w/r 2, £ = -c .

Let the initial and terminal conditions be denoted by Jw = O, K = l,-..,p

< 12, in the notation of the general problem in the fir_'t part of this

paper. For 8 minimum fuel trajectory, the function to be minimized can be

expressed as J ----m(to) , with m(t ) a given constant. If the initialI

position and velocity are given, we have

Jl-=to'J2---U(to)" Uo'Js---W(to)-Wo'J4_ r(to)" to'J5-_e(to)" So "

For terminal values, Je = m(tl) - ml, and the remaining J's would be

functions of tl, u(tl), w(tl), r(tl), m(tl).

Elimination of Control Variable by Weierstrass Condition

The Hamiltonian for equations (6) is

H=_1(w21rs - k/r2 + (F/m)cos_) + X2(rFim)sin_ + _u + xJlr2 -cX5

where the k's are functions of t not simultaneously zero.

From the Weleratrass condition, H, 8s a function of a,

= r(F/m) cos _ : 0 andmaximum. Hence H(_ -k1(F/m) sin _ + ka

HC_ = -k 1(F/m) cos (_ -k2r(F/m) sin (Z_< 0 .

It follows that

tan _ = rke/kl,sin (_= rk2/J(k _ + rake) , cos (_= kl/J(k _ + r2k_)

the radicals being positive because of HO_ _< 0 .

Elimination of (_ gives H = H + H , where
o 1

must be a
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= u+x w/r_-cx _nd _ = (F/m) J-(x_+r_X_)._o k1(w2/ra- k/r2)+ k3 4 5 i

The Hamilton-Jacobi equation for the base Hamiltonisn H ° then is

(7) _s/_t + (w2/r3 - klr 2) _sl_u+ u_sl_r+ (wlr 2) 8else - cSSlSm = O.

Determination of a Complete Integral

In seeking s complete integral, apply separation of vsrisbles; letting

S = Sl(t) + $2(8) + S a(m) + S4(u,r).

The Hamilton-Jscobi equation assumes the form

dS /at + (w_/r 3 - k/r _) _S4/_u + u_S /_r - (w/r _) dSJde - cdS/a_ = 0 ,
i'

which does not involve t, e and m explicitly. Hence

as /at= _1 dS/ae = % aS/_ = %

where _i_ _2_ % are arbitrary constants.

The Hamilton-Jacobi equation csn now be written ss

(8) (w_/r 3 - k/r _) _S /_u + u_S4/_r = cas - _ - _w/r _ ,

which is in the form of Lagrange's linear equation _0, Ch.XII], end its

subsidiary equations are

du dr dS4

_2/rS- k/r2 u - 0% - _ - _#Ir_

From the first subsidiery equstion we get

(9) u 2 - 2klr + w21r2 = -a2,

which we write 8s

f = _a 2 ,

where -a 2 is a constant of integration with the sign chosen so as to give

s periodic trajectory.

On substituting from the above for u in the last subsidiary equstion_

we have

dS ((cO_ - _i) r 2 - C_ew) dr
= ,

4 X q-aar 2 + 2kr - w 2
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the ambiguous sign of the rsdical being absorbed in the arbitrary constants

al, %, % • Integration now gives

S = - _ _-a2r 2 + 2kr - w 2 + Ak sin-l 82r - k - _ sin-1 kr - w 2

4 a2 aa kJ_- a% _ 2 _/k2 - a%2

+b,

where b is 8 constant of integrstion and A = c_ -
3 1

On eliminating s by use of (9) and introducing the sbbreviating notations

X 2 = -w 2 + 2kr - uar 2 ,

y2= (kr-w_)2+u%% _ ,

Z = kr . _2

we can express S in the form
4

Ar s
S = -- (-u + k X2-kr_ Z
4 X 2 _ sin-1 _ z " G2 sin -I _ + b,

or S =g+b.
4

The general solution of (8) will then be

_(f,s - g) = o
4

where _0 is an arbitrary differentiable function. It follows that

S =g+_f+_ ,
4 4 8

where _4 and (_e ere srbitrary constants, is a solution and may be taken

as a coml_lete int_grsl of (8). By adding Sl, $2, Ss, S 4 we now obtain

sn integrsl of equation (7). As explained in the general discussion of

Hamilton-Jacobi theory, the additive constant _ may be dropped. Also,
s

by Theorem 5, the term _ w can be _dded to give_ finally, as s complete
s

integral of the Hsmilton-Jscobi equation (7) for the base Hsmiltonlan

H the following
o '
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Ar3 k X 2 kr ) Z _ x2

S = CZlt + _2e + _sm + X2-('u + X sin-i Y- - _e sin'l _ " -7-- + %w.

The Remaining Canonic Constants

By Theorem _ (Jscobi's Theorem), if S is e complete integral of the

Hamilton-Jacobi equation, then there are constsnts Gl, -., B5 such that

8S/8_ i = Bi . On csrrying out the differentistions on the above S, we

get

rs k X 2 - kr)
B1 = t - _ (-U + _ sin "z

Z

G2 = e - sin-I _ ,

G3 =m+ cr--_3(-u +k X2 -X2 X sin_l k r)= m - c(G 1
-t)

= -X2/r 2
4

5

The Multipliers

Also by Jacobi's theorem the k's are equal to the partial deriva-

tives of S with respect to u, w, r, e, m ; and the equations so

obtained together with the above equstions determine a ten-parameter

family of solutions of the canonical equations for the base Hamiltonian

H On letting B denote
0

k 2 + G Ge ,
4 5

we find, after some simplificstlon, the following results:

kI = [2rG 4 - _/r + (rB s + k) kG_/rB] A/G: + (_4 - 3A(t - GII/G4)u

+ (_, - B_)%B/rB,
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k2 : [ur - 5B4(t - GI)] A_Jr2_ + 2%Gs/rm + a s + [Ak_5(rB 4 - k)

=_ , _ =(_
4 4 5 5

The multiplier k can be computed in the same way ss k end k ,
8 l 2

but it is not needed for H
i

The above computed _ end
1

_'s, u, and r. The variable u

end X 2 = - IB2 + 21_ ° u2r 2 we get
5

u2r 2 = _ r 2 + _kr - 62 .
4 5

Also we have, from the 13s equation,

= - o(t-_) .m 13s

k 2 ere expressed as functions of a's,

can be eliminated, since from G = -Xm/r e
4

The H Hamiltonisn
i

The perturbing_ Hamiltonisn H = (F/m) _2 + rRX2
i i 2

can now be ex-

pressed as a function of _'s, G's, r, end t, end r is a function of

B's and t by means of the equation for _ As explained in the first
i

psrt of this paper, H is now the Hemiltonisn for the total problem in
1

variables _i' _i' t. Consequently, the canonical equations for the

extremels in these variables are

More explicitly, letting k =_ ,
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F(L_h/_81 + r_2_/_8 + rX_r/_81)
= cFk +

(_- c(t- _I))_ _(8 - c(t- 81))

a

- Fx + ;(h_x/_aa + r2X_X2/_aa + rX_r/_aa)

(83 - c(t - 81)) 2 X(88 - c(t - 81))

& - F(kl_kl/_ai + r2k28k2188 i + r_ar/_8 i)

i x(8 - c(t- 8 ))
8 1

, i=2, 4, 5

_i - F(klSkl/_i + r2k28k2/8_i)
- X(8e - c(t - 81))

, i = i, 2, 3, 4, 5-

Since k and k are linear in the _'s, the differentiations in the
1 2

right members of the _ equations are easily carried out. However, this

is not possible for the _ equations.

The solution of the above system of differential equations gives the

optimal trajectories of the rocket in terms of J's, 8's, t and ten

constants of integration. Closed form solutions do not seem possible, so

approximation methods by some type of iteration on r seem necessary.

A SECOND METHOD FOR THE PLANAR PROBLem4

This method involves a canonical transformation of variables and

leads to a complete integral of the base Hamiltonian. As before_ the

perturbing Hamiltonian_ with the canonic constants as new variables, be-

comes the Hamiltonisn for the total problem. The resulting canonical

differential equations of extremals are somewhat different from those of

our first method, but they again involve similar inherent difficulties

and do not lead to closed form solutions.

The Canonical Transformation

Let the following transformation be made, where the q's denote

the generalized coordinates and the p's the generalized moments.
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_i = ql _ -U = Pl

w =q , X =p ,
2 2 2

r = qs _ ks = PS

e = q4 _ _4 = P4

_5 = q5 _ -m = Ps

This transformation is easily verified to satisfy the necessary and suffi-

cent condition for 8 canonical transformation as given in the first part

of this paper.

The other trsnsformations consisting of interchange of coordinates

and momenta have been investigated. Changing r to a momentum variable

greatly complicates the Hamilton-Jacobi equation. Changing e has little

effect on either the base or the total Hemiltonien. Changing u only,

or u and w , or u, w_ and m to moments give essentially the same S

for the base Hsmiltonien as does the above transformation.

A Complete Integral of the Base Hamiltonian

In the new vsriables_ H ° assumes the following form:

_ooql(qTq2- k/q_)_PlPa+poqA2-eqo.
Hence the Hamilton-Jscobi equation is

(lO)st+q_(_:/_2- _'/q2)- p_+ _a2/q_-Cqs=o,

where St, Pz' Ps' P4 represent 8S/St, 8S/Sqz , 5S/Sqa , and BS/Sq ,
4

respectively. A solution of the above pattie1 differential equation can

be obtained by Jscab_'s method [i13.

dS t dP 4 dP l dq a

0 o -_/q_ +_/_ -P_
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The first two terms give S t = 8S/8t = (_i' P4 = 8S/_q4 = (_4 '

two give

pldpl: (C/<- _/<>_q_•
On integrating this we get

p_= (-_q_+_q3-<>/<

and the last

_ 2 + - q2or Pl = W/qs where W = +4-_s qs 2kqs 2

The constant of integration, -C_8 , has been chosen negative to give a

periodic solution.

When the values for St' PI' P4 sre substituted in the equation (i0)

and the result solved for Ps' we get

p _s (%-e%)% +_-_q_ +%q_
_q w % w q_W

8

ThenF_-_3 IO_' _cq5 q_=_8)_ k(°_ - cqs) c_8 qs - k
8S dqs = -_s- + W + i sin=1,. - as J_2 = _ q2

8 8 2

+ _ sin -I kq 3 - q22

- 4 qj_ __ q_2

The solution of the partial differentisl equation (lO) is obtained

from the exact differential

dS = (BS/St)dt + (SS/Sql)dq I + (SS/Sqs)dq s + (SS/8q4)dq 4

However, q2 and qs need to be included as independent variables in

addition to tj ql' qs' and q4; so, by use of Theorem _, together with
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the above results• we get

(ql _1-cqs_
S = sit + _q" + qs c_s /

k(G - cqs) _ qs - k
W + 1 sin-1

- c_ _k _ - C_q 2-
3 s 2

+ _ sin -I kq s _ q2
+ G2q2 + %qs

- 4 qs _k2 " (r_qes2

as a complete integral of (lO) involving five parametric constants, the

additive constant being ignored. Note that the term qiW/qs occurs

twice in the integrations but is counted only once in S.

The Canonical Constants 6i and Momenta Pi

By Jacobi's Theorem• _S/_Gi = 6i' with arbitrary Oi " Let

c=_i-oq_ • D=4i _-_q_

Then

IB1 = t - W/__+ (k/Cr_s)sln-l(_q S - kVD•.

B2 = q2 •

B s = 3C(t- _i)/_ s - CW/_ s - _sqlqs/W + qs2C/as W + kqsC/C_sW

_ = _ _+sin'_(_%- q_)/%D ,

65 = qs

Where ambiguous signs occur above• the top sign is to be taken if

chosen positive, otherwise the lower sign.

W is
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= _S/_qi , it follows thst

= W/q 3 ,

- q/q2](qJW),

The Hamiltonisn H
1

Application of the csnonicsl transformation to the original H
1

gives

To express H in terms of _'s_ 8's. t and q2' we find from _ = q 31 2 2

_s = qs ' and the B 2 equation that

ql = [3C(t - 81) - _s82 - CW/_ s + qeC/W](W/eeq]+ [kqsCD2 + (k2C + _ _ )
2 2 2 2 4 _

(kq2 - 8_)]l_q2D 2 ,

where now C = GI - c6s' D = Wrk 2 - _s6_.W , _+_-622 + 2kqs - eeqes2

This value of q substituted in the formula for p above gives
1 2

+ [aekqe(Bs2 mC + eaa2 4)(C_qs s - k) + 8e (k2c + C_s_48_)(kqs - 82)]/°_q_Da_W22 2 "

By using the expressions for p2 _ ql _ and Ps ss above, we can
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reduce H to a function of _'s, _'s, qs' snd t. By the equation for1

_l' qs is an implicit function of _'s, 6's, and t. Hence HI becomes

a function of _'s_ _'s, and t, and is then the Hamiltonian for the

total problem. The canonicsl equations of extremals giving the optimsl

trajectory can then be obtained as in the first method. The analysis sgsin

is very involved and does not lead to closed form solutions, so we do not

proceed further here. For snother treatment of this problem one should

refer to W. F. Powers [12_ The search for csnonicsl transformations

which will give simpler forms for _. and G i should be continued.1
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Consider a dynamical system whose equations of motion are

qi = _H(qj ;pj ;t) ]
_Pi

Pi = - _H(q_;pj;t) I i=1,2 ..... n; j=1,2 ..... n (1)
@qi

where the Hamiltonian, H(qj;Pi;t), is understood to be a function of the gen-

eralized coordinates, qj, and*their conjugate momenta, pj, j=l,2,...,n, and

possibly the time, t. If one-half of the integrals of Eqs (I) have been

obtained in a suitable form, there is a we11-known theorem, due to Liouville, 1

which may be used to find the remaining integrals. The purpose of this note

is to point up the related, but perhaps not so well-known fact that a method

of obtaining a complete integral of the Hamilton-Jacobi partial differential

equation associated with (I) is implicitly contained in the theorem. Since a

complete integral of (i) will permit us to express the solution of (i) in

terms of canonical constants of integration, recognition of this fact is of

importance in studying perturbations of the original system. The method will

be discussed and applied in what follows.

Suppose that n integrals of a dynamical system with 2n degrees of free-

dom are known in the form

¢i(qj;pj;t) = ai, i=1,2 ..... n; j=l,2 ..... n (2)

where the a i form a set of n independent constants of integration. If the

Poisson bracket expression, (@i,@j), vanishes for each i and j and if the @i

are solvable for the Pi in the form

1E. T. Whittaker, A Treatise on the Analytical Dynv_nies of Particles cmd

Rgggd Bodies (New York: Cambridge University Press, 1959), pp. 323-325.
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= fi (qj ;aj ;t), i=1,2 ..... n; j=l,2 ..... nPi

the Liouville theorem states that the difference between

(3)

n

Zfidqi

i=l

and H(qj;aj;t)dt is the perfect differential of a function W(qj;aj;t) and

that the remaining n integrals of the system are given by

_W =

_a__T 8i , i=1,2,...,n
(4)

where the 8 i form a set of n constants of integration which are independent

of each other and of the set formed by the a i.

To say th at

n

Zfidqi - H(qj;aj;t)dt, j=l,2 ..... n

i=l

is the perfect differential of a function W(qj;aj;t) means that

_W
- fi Pi, i=l,2,. .. ,n

_qi

_W - -H
_t

(s)

(6)

(7)

Thus, implicit in the Liouville theorem is the fact that the function W is a

complete integral of (7) which is the Hamilton-Jacobi partial differential

equation associated with the system.

When the n integrals of (2) can be solved for the qi instead of the Pi,

i=l,2,...,n, the theorem may also be applied, if the canonical transformation

Qi = Pi _ (8)

Pi = -qi J
to new variables (Qi,Pi) is first introduced. Even if we are not able to

solve the n integrals (2) explicitly for the Pi, or for the qi, a complete

integral may still be obtained in certain important cases now to be discussed.

Suppose we are able to solve the integrals (2) explicitly for £(£ < n)

momenta and n-£ coordinates. Suppose further that, after reordering the sub-

scripts, the expressions for the £ momenta and n-£ coordinates can be written
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in the restricted form

Pi = fi(qk;Pm;_j; t) i=1,2,...,£; k<Z;
• m>£; j=l,2 .....-_

qi = hi (qm;Pk;aj ;t) i=£÷l,Z+2,...,n; k>£;
' m<__; j=l,2 ..... n

By introducing the canonical transformation

Pi* = Pi qi* = qi, i=1,2,...,£

Pi* = -qi qi* = Pi' i=_+I,£+2,...,n

Eqs (9) may be written in the form

* = f.*(qj*;_j;t), i=l,2 ..,n; j=l,2 ..... nPi z '"

Equations (Ii) are in the form of (3), and the theorem may be applied.

(9)

(io)

(11)

Example i: Central Orbit in the Plane, Polar Coordinates

For a particle moving in a plane under a central force derivable from

the potential V(r), the Hamiltonian function is a constant _i. If we desig-

nate by (Pr,P@), the momenta conjugate to the polar coordinates (r,@), respec-

tively, (see Figure i), the system has the well-known integrals

PO _2, a constant (12)

Pr -- -_-j _,s - r 2 _l_j

From (S), we write

dW = Prdr + podO - _idt (14)

If r o is chosen so that no new independent constant is introduced, the func-
tion

£
W = IPrdr + _2 O - _i t

r o

(15)

obtained by integrating (14), satisfies (7). Also• W is a complete integral

of (7) since it contains two non-additive independent constants el and _2-
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Y

Figure 1

Example 2: Free Motion of a Triaxial Rigid Body

For the free rotations of a triaxial, rigid body about a fixed point O,

the Hamiltonian function, which is a constant of the motion, el, may be writ-

ten in terms of the Euler angles (8,_,¢), which specify the position of prin-

cipal axes at 0 relative to space-fixed axes O_n_ and their conjugate momenta

(ps,p¢,p_). See Figure 2.

x

Figure 2
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Three known integrals for this dynamical system are 2

P_ = a3, a constant

tan_l_ /c_72 _ _32 _ p@2

_3 __=-_J_o_-p_ _p_ }

I_/A_(2B= 1 - _72)C + (C-B)p_21½
+ tan-i kB) (2A_ 1 a22)C + (C- A)p,2J

(16)

(17)

(18)

where A, B, and C are the principal moments of inertia at 0 and a 2 is the

constant magnitude of the angular momentum about 0.

Although it is not possible to solve (17) and (18) so that p_ and Pe are

expressed in the form of (3), the set of equations (16), (17), and (18) is of

the form of (9); hence, the canonical transformation

%

Pl = -_' ql = PC /

P2 = -8, q2 = PB

P3 = P_, q3 =

(19)

allows us to write (16), (17), and (18) in the form of (11). Then, from (S),

we write

dW = pldql + p2dq2 + p3dq3 - aldt (20)

If qlO and q20 are chosen in a manner which introduces no new independent

constants, the function

2See Whittaker, p. 325.
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W = -_I t + _3q3 + tan -I /_22 _ _32 _ x 2
o_3 dx

q20

- tan -I /a?2 - qlZ - x2 dx

ql

q20 J

+ tan-I I kB/(2A_ I - a22)C + (C - A)x ,L

ql0

obtained by integrating (20), is a complete integral of (7).

½dx
(21)
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AN OFFSET VECTOR ITERATION METHOD FOR SOLVING TWO-POINT

BOUNDARY-VALUE PROBLEMS

By C. F. Pric_

An offset vector iteration technique is proposed for solving two-point hoandary-value problems.
In this paper the properties of the method are explored. Appfication to parameter selection is
first considered and canvergonce properties are described; comparis_ is made with o(her
numerical methods. The two-point hoandary-vaine problem is shown to be equivalent to the
parametec solection problem. The method generally has a lower convergence rate than second
order techniques; however, in many applications each iteration requires relatively few compoth-
tionml operations. Therefore it is competitive with higher order numerical procedures in
applications that require few iterations to obtain an acceptably accurate solution. A modification
to the offset vector method is suggested which takes advantage of the finite difference information
generated at each iteration.

(First received September 1967 and in revised form February 1968)

1. Introduction

The use of offset vectors to develop iterative techniques
for solving two-point boundary-vahie problems is a
numerical procedure that has been proposed and
investigated for use in near-earth (Godal, 1961), (Price
and Boylan, 1964) and interplanetary guidance applica-
tions (Battin, 1964a), (Slater, 1966). The advantage of
the method, when it can be applied, is that each
iteration is often computationaUy simple to mechanise,
relative to other techniques. In fact, there is evidence
that it converges sufficiently rapidly in some cases to
permit its use in real-time airborne guidance systems
(Price et al., 1964). This study was motivated by the
desire to utilise an offset vector method for solving
certain two-point bouadary-vahie problems that repre-
sent necessary conditions for optimal trajectories. An
example of such an application is presented in a recent
paper (Price, 1967).

The concept of the offset vector method is easily
understood and motivated through a simple, familiar
example. Consider the problem of hitting a target with
a projectile fired from a gun that is stationary with respect
to the target. Let the direction of the gun barrel on the
jth shot be designated by a unit vector, b,J = 1, 2 .....
expressed in an appropriate coordinate system. On the
first shot, j = i, it is some function,

it= 6(rr),

of the target's position, rr. Suppose the first shot
misses the target by a miss-vector, Art, such that an
impact point, rt, is defined by

r t = r r + Art.

Using whatever quantitative knowledge of the miss be
has, the gunner attempts to make an intelligent choice
of the pointing direction on the next shot. If it happens

that h is expressed in the functional form (however
crude)

/2 = h(rr- Art)

where (rr- Art) is a 'dummy' target position, we say
that an offset vector iteration technique is being used.
By analogy, on the kth iteration

ik+t = ik+t(rr -- Art -- Arz -- . . . --Ar_); k = 1, 2...

The philosophy is that on each iteration the aiming point
is changed by the negative of the miss-vector. It is
shown in this paper that such an approach is applicable
to solving two-point boundary-value problems; in fact
the above example can be formulated as such a problem.

Offset vector methods are ad hoc in nature because no
general quantitative prescription is given for implement-
ing the iterations. In the projectile example, the
functional form of ik+ t( ) depends upon the sophisti-
cation of the fire control system. This point is
emphasised in the subsequent discussion. However, it
appears that the convergence properties of the technique
can be described, to some extent, without reference to
any special application, and comparisons can be made
with other numerical procedures. That is the primary
purpose of this paper.

In the next three Sections the concept of offset vectors
for solving parameter selection problems is more
precisely defined, convergence properties are described,
and a simple example is presented. In Sections 5 and 6
it is shown that the two-point boundary-value problem
reduces to that of parameter selection and results of
utilising the method in a typical physical application are
given. In Section 7 a modification to the offset vector
method is suggested which takes advantage of the finite-
difference information generated at each iteration. This
provides a means for making a transition from the offset
vector method to a finite-difference version of the

* Staff Member, Experimental Astronomy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts.
This research has been sponsored by NASA ERC Contract No. NGR 22-009-207.
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Newton-Raphson technique in situations where many

iterations are required.

2, An offset vector method for solving the parameter

selection problem

Parameter selection or equation solving is simply the

task of finding a value of an n-dimensional vector

x -- x® which satisfies the vector equation

g(x) -- O. (1)

In parameter optimisation problem% equations of this

form are necessary conditions that a function q_(x) have

a stationary point. We assume that g(x) also has

dimension n and that at least one solution of eqn. (1)
exists.

Numerical techniques for solving eqn. (1) depend

upon having an initial guess Xo that is 'near' the desired

solution x_ and improving that guess by iteratively

generating a sequence {_¢o, xl, -..} which converges to

x_. Criteria for convergence of the sequence are

usually given in terms of sufficient conditions satisfied by

g(x) in a region about x_ containing x 0.
The most important property of any particular

numerical method is the total time required to achieve a

sufficiently accurate solution for x_. This is dependent

upon two factors the number m of iterations required

to obtain a value xm that is sufficiently close to x®, and

the computational complexity of each iteration. One

often observes that these factors are inversely related;

that is, the simpler each iteration is to perform, the more

iterations required to obtain a desired level of accuracy

in the solution. This characteristic is evidence of the

fact that the amount of progress made in each iteration

toward x_, i.e. the convergence rate, depends upon the

amount of information used about g(x) in deriving the

reeursion expressions.

Because the total time required for convergence is

often dependent upon inversely related factors, it is

difficult to state a priori in any particular application

which of the various numerical methods is most

advantageous from a computational point of view.

However, if any initial guess x0 is quite close to x_,

relatively simple iteration techniques may accomplish

the required degree of accuracy with no more. or few

more, iterations than more elaborate methods. This

rationale provides the motivation for describing an offset

vector itemllion technique which is potentially simple to

implement and is based upon the idea of having a

reasonably accurate initial guess x0; in fact, the structure

of the method is defined by the manner in which x0 is
chosen.

Suppose one can find an n-dimensional vector function

_(x) that approximates g(x) such that the solution

x _ Xo of

_(x) = 0 (2)

is relatively easily determined.* For example, g(x) and

* This is not to saythat Xo need be determined by an explicit
formula; the solution to'eqn. (2) may also have to be obtained
numerically. An example of this kind is given in Section 6.

_x__ a(x) _g_

<-2 / "./",I /'®

;.o J
/I (b)

% I ii

gl " 7-
%

re)

Fig. l. Graphical development of the first two iterations of
the offset vector method applied to a scalar function g(x)

_(x) may be of the form

g(x) -- g -r Gx -- ef(x) _ 0 } (3)
_(x) = g + Gx = 0

with E a constant scalar, g a constant vector, G a non-

singular matrix and f(x) some nonlinear function of x.

If the term ef(x) is small relative to g(x) for x near x®,

the solution ;Co -- --G-_g, is near x®. Let us write the

solution to eqn. (2) as

xo- $-'(0) = h(0) (4)
where _ -t( ) represents the required inversion of_(),

and the argument 0 refers to the value of the fig.htrhand

side of eqn. (2). The situation is illustrated gra_p!_cally

in Fig. la for n = 1.

Having xo, we can evaluate

g(xo) = go, (5)

noting the eqn. (1) is in general not satisfied, that is,

gc _ 0. Based upon this observation an improv_rccnt

to xo can be determined by the following reaso_g.

Suppose _(x) differs from g(x) by only a constant vector

f0, that is,

_(x) = g(x) +fo; for all x. (6)

Then

g(xo) = --fo = go.

If this be true, the solution to eqn. (1) is also the solution

to

_(x)-fo = 0
or

_(x)= go. (7)
Thus we offset the approximating function by the

negative of the error determined in eqn. (5) and calculate
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xt from eqn. (7), using the notation of eqn. (4).

xl = h(--go). (8)

This sequence of operations is illustrated in Fig. lb.

The quantity --go is analogous to --Ar I in the projectile

problem of the previous section.

In general, x I does not satisfy eqn. (6) either, as

evidenced by

g(xO _ gl _ O.

Accordingly, replace eqn. (6) by the conjecture

_(x) -- g(x) go +ft (9)

which leads to

g(xt) -- --ft -- gt

_(x) -- --go gl (10)

resulting in

x2 = h( go gl). (11)

These steps are shown in Fig. lc.

The recursion relationships required for the con-

tinuation of this method are readily inferred from the

preceding discussion. Define

gj = g(xj)

I

Yi---- _&; i----l,0,1 .... (12)

9'-1 -- --g-t -- 0

and let

g(xi)--_i-t; i_0,1 .... (13)

Then,

)'i_ Yi-l--gi; t--0,1 .... _[
(14)

xi -- _ - i(_,i_ i) -- h(__ I)

At each iteration one evaluation each of g( ) and h( )

is required. The quantity y_ is referred to as the offset

vector. Now we shall discuss circumstances in which

the sequence {Xo, X 1.... } generated by eqns. (12-14)

converges to x_.

3. Convergence properties

One expects that the convergence properties of the

offset vector method depend upon the accuracy with

which_(x)approximatesg(x). To pursue this reasoning

define an error vector Ag(x) by

g(x) -- _,(x) 2- Ag(x). (15)

a

Substituting x, for x, we have

g(xi) -- g(xi) -[- Ag(xi). (16)

Into eqn. (16) we can substitute for _(xi) and xi from

eqns. (13) and (14), producing

ov.w o, -- ')si- i --o t'-_tl- z_a- x-,]

Rearranging terms and substituting for the quantity

(Yt- t -- gi) from eqn. (14) yields

Yi _ --Ag[h(Ti- 0]. (18)

Equation (18) is equivalent to eqn. (14) and is the

recursion for solving

_, = --Ag[h(_,)]. (19)

by successive approximations. The solution, y_, to

eqn. (19) is the limit of the sequence of offset vectors

{70, Yl .... }. Viewed another way, it is the value of

@(x_o). (See Fig. 1.)

Sufficient conditions for the convergence of the

sequence {y_} are known for successive approximation

iteration methods. For example, convergence _s

assured (Todd, 1962) if Ag[h( )] satisfies the Lipschitz

condition

maxlAg[h(;/)] Ag[h(_'3] < k max]z" -- _/'1;

0<k<l (20)

for all )/and y" in a neighbourhood of )% containing

";:-1 --0.

Alternatively, a recursion relationship for x_ can be

derived from eqn. (14). Substituting for 7_-t and )'_-2

from respectively eqns. (14) and (13), we have

x, -- h[--Ag(x i_ ,)]. (21)

The solution of this expression with x_ and x__ 1 replaced

by x is the value of x = x_ that renders g(x_) -- 0 and

g(x_) - e_.
A third way of viewing the iterative procedure is that

the sequence {go, gl, - • .} of evaluations of g(x_) is being

driven to a limit of zero. This is perhaps the most

natural point of view for the applications to be con-

sidered subsequently. From eqns. (12)-(14) it is evident

that g(x_) is a nonlinear function of all g(x:), j < i, of the
form

gl = g [h(0 go gl -- • . • --gi- 1)]. (22)

Similarly,

g_+t--g[h(O--g0 gt--.-, gt)]. (23)

Linearising g_+l about g_ with substitution from eqns.

(12)-(14) we have

g_+l _--gi G(xi)H(yi_Ogi; i -- 0, 1 .... (24)

where

G(x) = bg(x), bh(y)--_-x' H(e)=-_-. (25)

Equation (24) indicates that

lira gi = 0

if IIZ-- Gn] < 1 (26)

in some sufficiently small region about x_ such that the

linearisation is valid. Note that if g( ) _ _(), GH -- L

These convergence properties provide a comparison
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between the offset vector method and other procedures

that can be employed for finding x_. Considering

eqn. (19), perhaps the most significant observation is

that the method does not possess second-order conver-

gence because the gradient matrix corresponding to

eqn. (19),

bAg[h(r)]
by ._, v_O'

n general (Todd, 1962). Thus a Newton-Raphson

technique, beginning at x o may require fewer iterations

to approach x_ within a desired accuracy. However,

the offset vector method possesses two advantages that

motivate its use in certain situations.

First, applications arise in which g(x) cannot be

expressed in closed form, such as the solutions of many

two-point boundary value problems. In these cases

every evaluation of g(x) requires numerical integration

of differential equations. In addition, for Newton-

Raphson-type procedures the gradient matrix must also

be computed numerically, requiring additional complete

integrations of the appropriate differential equation ; for

each iteration. Hence, if the approximation _(x) is

sufficiently accurate, one may conceivably reach a point

sufficiently close to x_ with an offset vector technique

before a higher order method gets started. The offset

vector method has proved sufficiently rapid in situations

of this kind to be incorporated in a real-time airborne

guidance system (Price et al., 1964). An example of

such an application is included in Section 6.

Second, the offset vector method is a reasonable

starting procedure for a higher order method in situa-

tions where many iterations are required;, The points

Xo, Xl,... and associated values go, gl, _.. can be

stored to provide corrections, based on finite differences,

to subsequent evaluations of x_. A possible method for

accomplishing this is described in Section 7.

There is the disadvantage that some means must exist

for finding an appropriate _(x). Whether this can be

done depends upon the particular problem and the

analyst's ingenuity; for this reason the concept of offset

vectors does not provide a ready-made numerical

algorithm for attacking all parameter selection problems.

The fact that applications are known (see the references

mentioned in Section 1 and the example of Section 6)

where the method can be applied is a testimonial to its

usefulness.

4. Example 1

To illustrate the offset vector method, a simple one-

dimensional example is presented using equation

numbers corresponding to those expressions in preceding

sections which are exemplified.

Given

g(x) -- 1 ÷ x + _x s -- O. (1)

Let

_(x) = 1 q-x. (2)

Then

)_i = Yl-l--gi

xi = h(Yi-0 = "gl-i -- 1. (14)

Using the criterion for convergence provided by eqn. (26),

we find that

G(x) = 1 -_- 3¢x2; H(y) = 1 (25)

3x2[_] < 1. (26)

Furthermore, from eqn. t.:'4)

' 3x_[,I (24)

which provides a measure of the convergence rate.

It should be emphasised again that the offset vector

method is not promoted especially for a high conver-

gence rate. In general, and for this example in par-

ticular, it converges more slowly than Newton's method.

The main advantage is the relative simplicity with which

each iteration can be performed. This is illustrated by

observing that the recursion relationships in eqn. (14)

for this example require two subtractions and one

evaluation of g(x) per iteration. On the other hand,

Newton's formula,

g(x3 . dg(x)[

x_+l=X_--g_3, g'(x3= dx 1....

requires one subtraction, one division, one evaluation of

g(x), and one evaluation of dg(x)/dx per iteration;

clearly this entails significantly more computation. The

total time required to obtain an acceptably accurate

solution for x_ is less for the offset vector method if It]

is sufficiently small so that only one iteration of either

method is required.

In situations where g(x) has several dimensions and a

complicated functional form, the computational advan-

tages offered by an offset vector method are more signi-

ficant. As mentioned previously, it is competitive with

higher order techniques when a sufficiently good approxi-

mate solution can be obtained. In applications where

the problem must be solved repeatedly, as in rocket

guidance systems, considerable computational saving

may be gained. This is illustrated by the example in

Section 6.

5. The two-point boundary-value problem

The use of offset vectors to develop iterative techniques

for solving two-point boundary-value problems is a

numerical procedure that has been applied to near-earth

(Godal, 1961), (Price et al., 1964) and interplanetary

guidance (Battin, 1964a), (Slater et aL, 1966) problems.

In this section it is shown that the convergence properties

can be stated in the same terms as for the parameter

selection problem.

A two-point boundary-value problem is posed by

assuming a given dynamical system described by

n-dimensional vector differential equations

Y_= f(x, t) (27)

148



BOUNDARY-VALUE PROBLEMS

with prescribed end conditions

(1)[X(to) , to] = 0 } (28)_[x(t:),t:] = o
where to and t/ are initial and final times, x is an
n-dimensional state vector, 4) and _ are respectively
1- and m-dimensional vectors, with l + m = n q- 2. It
is assumed that a solution exists which cannot be

determined in closed form, requiring the use of numerical

techniques.
We shall regard the solution to eqn. (27) known when

the complete set of initial conditions X(to), to is deter-

mined such that eqns. (27) and (28) are satisfied. The

explicit dependence upon eqn. (27) is conceptually
eliminated by writing the solution as

x(t) = x[x(to), to, t] (29)

so that eqn. (28) becomes

FOtx(to), to] ] = 0 (30)
g[x(t0), to, t.e] = bb{x[x(t0) ' to , tf], t/}]

Equation (30) has the form of eqn. (1) where the

parameters to be determined are X(to), to, and t r.

The offset vector method is implemented in a manner

analogous to that described in Section 2. Approximate
solvable relations

_ [X(to), to, tA = 0 (31)

are derived, often by means of a simplified set of

differential equations

= fix, t), (32)

subject to eqn. (28). For example, eqn. (27) may
describe motion in a many-body gravitational field and

eqn. (32) may represent an approximating two-body

model with eqn. (28) specifying the initial and final

positions at specified times. The solutions xo(tOo), too,

and tio of eqn. (31) are entered as initial conditions into
eqn. (27), and the differential equations are integrated

from t0o to tso producing

Xo(tf_ _ X[Xo(too), too , tfo ]. (33)

Substitution of to,, tlo and xo(too) for to, tf, and x(t0) in
eqn. (30) yields

g[Xo(too), too, tfo] = go _ 0

in general. Defining the vector

zT= [x(t0V,to,tf],

the iterative computation of the sequence {z0, zl .... }

proceeds just as in Section 2 with the understanding that
each evaluation of

g [xi(to,), to,, tA] = gi

requires integration of eqn. (27).

The motivation for using offset vectors is now more

apparent. Vis-A-vis higher order methods it may be of

considerable computational advantage to obtain even an

algebraically complex form of eqn. (31) if computation

of the gradient of g[x(to), to, tr] is thereby avoided. A

practical multidimensional example of this type is

considered in the next section. Observe that the pro-

jectile problem discussed in the Introduction can also be

formulated as a two-poirR boundary-value problem and

its solution obtained in the manner described above.

6. Example 2

This section discusses an application of the offset

vector method to a practical two-point boundary-value

problem. Equation numbers denote those expressions

in previous sections which are exemplified.

Consider the motion of a body in a planar orbit in

the earth's gravitational field. If the earth's rotation and

atmospheric friction are neglected,* the equations of

motion are reasonably accurately represented by

JEA 2 5JE_J2z z]
¢Jx = -- LE r2 (27)

"_ ='vz-- L 1ZVE JEA2 5JEA2zZ_ 2JEA2z_,= ;3 + ,2 P ]-T
where A is the equatorial radius, J and E are constants,

r = x/(x 2 + z2), and x and z are position coordinates in

an orthogonal coordinate system with the z axis along

the earth's polar axis. Because the orbit is polar, only

two dimensions need be considered. Equations (27)

describe the gravitational accelerations including the

effects of the earth's slightly elliptical shape. Let us

pose the problem of finding the initial velocity com-

ponents, v_(to) and %(to), required to transfer a body

from a given initial position at time to = 0 to a given

final position at a specified final time. Hence

t0=0 te-- Tf=0 ]

X(to) -- a_ = 0 x(tf) -- bx = 0 _ (28)

Z(to) -- a z = 0 z(ti) -- b, = 0 J

where a_, a_, b_, b_, and T/are given.
For the ease where the earth's oblate effects are

neglected (J = 0 in eqn. (27)), the task of finding the

initial velocities subject to the given conditions is the
familiar Lambert's problem of classical mechanics. For

this ease eqn. (27) can be integrated analytically by

changing the independent variable; several methods of
obtaining explicit expressions for g(x) are known

(Battin, 1964b). For J =_ 0, there is no known method

of integrating eqn. (27) analytically; hence a numerical

technique is required.
The offset vector method is naturally adapted to this

application by using the known solution to Lambert's

* It is recognised that neglect of the earth's rotation contradicts
the intent of treating a practical example. However, this effect can
be inciuded without changing ih¢ qualitative interpretation of the
numerical results; it is omitted only to reduce the complexity of
the discussion.
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Fig. 2. Computational flow diagram of the Rh iteration in
Example 2

problem with J 0 as an approximation. Introducing

J -- 0 into eqn. (27) produces a set of equations repre-

sented by eqn. (32) in Section 5. For the terminal

conditions prescribed by eqn. (28), one form of_(x) due

to Godal (Battin, 1964b) is given by

vx(O) Cl(b x C2ax) 0

v_(O) -- Ct(bz C2az) -- 0

Cl _/(EP) __ 0
r/ro sin 0

1 _- r_(1 cos 0) 0C2

r0 v(a_ + a_)- 0

r/ _/(b 2 _- b21 0 (31)
0 COS ' [(axb_ a,b_)/rorf] -- 0

P _/(rorf) sin 2 0.50 0
(B COS _) COS 0" 50

B -- (ro -- r/)/2_/(ror:) cos 0.50 -- 0

2_(_/(r0r/) i 5 ,B cos a',r: cosO.50_._1,_- )
k

2s_n3_ J
The soluuons to eqns. (31) are the proper initial velocities

to achieve the conditions m eqns. (28), neglecting the

oblateness of the earth. Observe that eqns. (31) are

transcendental in e: therefore their solution must be

obtained numerically. This represents a situation where

eqns. (2) cannot be inverted analytically.

The offset vector method proceeds by carrying out the

following steps:

1. Denote the solutions of eqn. (31) as V_o(to) and

v_0(t0); these are obtained by any convement
numerical method. Newton's method has been

used in this simulation.

2. Integrate eqn. (27) from t 0 to t 1"/ using

a_, a,, Vxo(to) and V_o(to) as initial conditions.

Denote position on this trajectory by Xo(t) and Zo(t).

3. Evaluate the left hand sides of eqn. (28) for the

integrated trajectory. Define

Axo(T:) = xo(Tf) b_

Azo(T:-) = zo(T:) b_.

4. Reeompute the initial velocities from eqn. (31) by

reqmring

x(Ty) b_ -- Axo(Tz)

z(T:) -- b, -- Azo(Tf).

This implies that eqn. (31) undergoes the changes

of variable,

b, _ b_ Axo(T:) b,,

b, _ b, Azo(T:) b_o.

Denote the solutions as vxl(to) and v_l(to).

5. Repeat steps 2 through 4 in an iterative fashion.

The functional diagram in Fig. 2 illustrates the
steps at the ith iteration.

For this simulation the following parameter
values are used:

a_ 2.093 - l07 feet E 1.407645 × 10 _6

a_ 0"0 feet J 1.62345 _ 10 3

b_ 0"0 feet A 2"093 • [07 feet

b z -- 3.0 - 107 feet T: 2400.0 seconds

This roughly represents insertion into a 2000-mile

altitude orbit at a point above the pole from a point on

the equator. The computation was performed in double

precision arithmetic on an IBM 360/65 computer.

Newton's method is applied to solve Lambert's problem

and a Gill-modified Runge-Kutta integration technique

is used to integrate eqn. (27) with a 20 second time step.

The values of terminal position error. Axe(T:) and

..kz_(T:), for two iterations are given in Table 1:
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Table 1

Position error data from simulation

fRounded off to 3 significant figures)

i=0
ERROR ERROR WITH NO

QUANTITY
CORRECTIONS TO

LAMBERT SOLUTION

FEETJAxi(Tf)J 2-34 _ 104

[Azi(Ti) [ 5.37 x 10'

[__ I

ERROR AFTER ith ITERATION

i=1 i=2

FEET FEET

1-51 × 101 4.41 X 10 -2

7"25 × 101 9.56 × l0 -2

t

ISt offset iterQhon

o_ I st linearlzeO correction

xt x_

_nd offset iteration

x 2

to) x-sooce x i

# $" .._go
[ I ' llneorized /

correction
_g_ Ist offset iterotton

'',xgf

¢ Z_g2

gl xx _ 2 nd offset iteration

(b] g- space gl

Fig. 3. Progress of finlte-difference modification of offset
vector method in two dimensions

Adequate accuracy is obtained in one iteration for many

applications. For these cases any other numerical

method that has an equal or greater convergence rate

can be compared on the basis of the computational

complexity of each iteration.

In this simulation the time required to solve Lambert's

problem with sufficient accuracy is approximately

0.01 seconds whereas that required for integrating eqn.

(27) is 0.30 seconds. Because the latter* dominates

An integration slep three or four times iarger than 20 seconds

would give terminal position accuracy better than 100 feet in this

example.

the former, any method that requires more differential

equations to be integrated is at a competitive dis-

advantage with the offset vector method. For Newton-

Raphson type procedures, the gradient matrix of g( )

with respect to vxi(to) and v,_(to) must be obtained. This

can be obtained numerically by perturbing each velocity

component separately and integrating eqn. (27) to

determine the effect on the end conditions. Obtaining

the complete gradient matrix by this procedure requires

n additional complete integrations of eqn. (27) per

iteration; this results in tripling the amount of integra-

tion required in this example, effectively tripling the

computation time for each iteration. The gradient

matrix can also be obtained by integrating the linear

variational equations associated with eqn. (27); how-

ever, the increased computation is of the same order as

that required to obtain the matrix by the perturbation

technique.

These comparisons indicate that the offset vector

method is superior to higher order methods in some

problems. The example considered here has application

to rocket guidance for which the thrust is directed so

that the vehicle's velocity matches the values of vxi(to)

and v,i(to) in Fig. 2. The two-point boundary-value

problem must be solved many times in rapid succession

because the initial time and the rocket's position are

constantly changing. For 'real-time' computation of

this sort. speed is a primary consideration.

J

7, Modified offset vector method

In Section 3 it is pointed out that the offset vector
method can serve as a starting procedure for higher-order

techniques. The possibility for doing this is evident at

the (n + t)th step after the sequences {Xo, xt .... x,}

and {g0, gt .... g,} have been computed. Defining

Axi=x_ X__l'_
(34)

Agi = gl gi- 1;

we have sufficient information to derive an approximate

gradient matrix (or its inverse) provided the Ax/s (or

Agi's ) are independent. For example,

_g _ G= X-t_ (35)
bx

where & and X are matrices whose ith columns are

respectively Agz and Axe. Faster convergence may

possibly be obtained by continuing the numerical pro-

cedure with a Newton-Raphson-like technique using

to determine new values of x according to

xi+t -- C,7Ig, (36)

where _ depends upon the last n values of Ag and &x.

In this section we shall describe a reeursive method

whereby the gradient information available at each stage

is utilised to a_ust the offset vector computation,

producing results analogous to eqn. (36).
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Consider the first two steps in the offset vector method

after which x0, xl, go and gl are known. These 'points'

are indicated for a two-dimensional case in Figs. 3a and

3b. With Axl and Agl thereby determined, we can

calculate the required first order change Ax_ in x to

produce a desired change Ag' in g in the direction of

Agt :

Ag'

Axl = _ Axl. (37)

Note that Ag' is a scalar that may, be either positive or

negative. Out objective being to drive g to zero, to first

order (approximately*), we can remove that component

in the direction parallel to Agl by defining

Agl }

Ag_ = --(gt.iast)izxgt; iAg, _

Ax_ = --(gt.ias,)Axdl Ag_l (38)

xl = xt + Ax_

g_ = gl + Agt-

These quantities are illustrated in Fig. 3. Note that

--(gl.iAg,) in eqn. (38) plays the role of Ag" in eqn. (37).
There is as yet no gradient information available in

the direction normal to Agt so, at this point, return to

the offset vector algorithm. First, using eqn. (13)

calculate the value 76 of the offset vector that cor-

responds to x_:

V6 = _(x3. (39)

Assume that

g(x_) _ g, + Ag; _ g_; (40)

note that exact equality does not hold because Ag[ is

computed from a linearised analysis. Now let

r, = r6 - g_ l

x2 = h(70 _ (41)
g2 _ g(x2).

This completes a new step in the iteration process.

Observe that the same number of evaluations of g(x)

are required as for the offset vector method. The
difference is that x2 is computed with the aid of an

intermediate value x_ that is calculated by a finite dif-

ference projection.

From x2 and g2 the quantities

Ax 2 = x 2 -- xj; Ag2 = g2 -- gl (42)

are calculated as illustrated in Fig. 3. In the two-

dimensional case Axt, Ax2, Ag I and Ag 2 provide suffi-

cient information to continue the search for x_ by a

finite difference method alone, provided the Ax's and

Ag's are independent. In higher dimensions we can

proceed as before, calculating an intermediate x_ based

upon finite difference projections in both Ag I and Ag 2

* This is not an exact first order calculation because the gradient
in the direction _gl is computed from a finite difference.

Ax I

x_._ / (Ag2. lag t /iAgl )AXl

AX2_

x2_'_Sxz

(u) x -- space x I

r4

Agf -. .,.,...,eg o

(Ag2"iAgl) _,Ao.

;Ix
g2

(b] g- spuce gt "_

Fig. 4. Illustration of orthogonalisation of the vectors Ag I
with the associated transformation on the _x_

directions and using the offset vector to find corrections

to x6 in the remaining directions. Here we shall derive

a recursion based upon orthogonalisation of the vectors

Agv

Suppose Agt, Ag2, A.x! and Ax 2 are given as shown

in Fig. 4. The component of Ag 2 orthogonal to Ag t is

given by

t_g2 = Ag 2 -- (Ag 2 . iAgt)iA_c

According to eqn. (37), the associated change in _x

required to accomplish the increment 8g 2 is given by

8x2 = Ax2 - (Agz.iag,/lAgt])Axt.

Defining 3xt = Axt and 8g I _ Agt, we can calculate

the change Ag_ required to drive the projection of an

#.dimensional vector gz on the space of _he ortliogonal

vectors 8g t and 892 to zero. Requiring

(Ag_ + g2).Sg,=O; /=1,2,
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we have .

Ag_ = -- (g2. i,,,)i_s, -- (g2. i,s_i, s2.

The associated change in x, Axe, is given by

Ax_ = -(g2.i,_s,llSgJl)Sxl - (g2. i_sJ[Sg2l)_z -

Having Ag_ and Axe, we can calculate x_, g_, yj, Y2, x3,

and g3 from eqns. (38), (39) and (41) by increasing the

value of each subscript by one.

This reasoning leads to the following set of recarsion

relationships for deriving x_+ i, having {x0, xl,.. • xi},

{go, gs .... gi}, orthogonal directions {3gl, 3gz .... 3gi- 1},

and the corresponding set of 'influence" directions

{Sx,, 8x2 .... 8x,_ O:

g, = g(x_)

AXI = XI -- Xi-1

Ag_ = gl -- gt- i
1-1

3gi = Ag t -- _ (Ag i . inlj)issj
j=l

I-I

3xs = Ax_ - _ (Agi.is_/l_gsl)Axs
]_1

Ag; = -- _ (gi.i,L,:,)i,_ss (43)
J=l

Ax_ = -- _ (gi.ingj/l_gsl)3xs
1--1

x; = x, + Ax;

g; = g, + As;

_,;_, = h(x;)

_,, = y; , - g;

xl+ I = h(yi).

lldercoces

To start the process, two iterations of the unmodified

offset vector method are performed to provide values of

x 0, xm, go and gl. For i _ n, we can discard all 3x s and

8g s forj _ i -- n; one set of directions is then effectively

removed at each step to be replaced by 8g, and 3x_.

Furthermore, for i :> n the last four expressions of

eqn. (43) can be disregarded if we let

x_ _ ------x'_; i > n. (44)

That is, a Newton-Raphson-like procedure, using

approximate derivatives can be substituted for the offset

vector method at the nth step.

g. Summary and conclusions

The offset vector method presented here is one that has

been utilised to solve mathematical problems arising

from special applications. The technique has evolved
in this fashion because it requires knowledge of an

approximate solution whose availability is dependent

upon the physical situation. The purpose of this paper
is to give the method more formal status as a numerical

technique by presenting a recipe for its implementation,

by developing criteria for convergence, and by illustrating
its advantages through examples. It is found that the

convergence rate is generally slower than that of second

and higher order methods, but each iteration is relatively
rapid to perform. Possible applications are those where

few iterations are required or as a starting procedure for

higher order methods when many iterations are

necessary.
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Abstract

A linearized theory is developed for minimum fuel guidance in the

neighborhood of a minimum-fuel space trajectory. The thrust magnitude is

unrestricted so that the thrust is applied impulsively on both the nominal trajec-

tory and the neighboring optimal trajectories. The analysis allows for additional

small midcourse impulses as well as for small changes in the magnitude, direc-

tion, and timing of the nominal impulses. The fuel is minimized by determining

the trajectory which requires the minimum total velocity change when summed

over all the impulses.

The analysis is deterministic and applies to arbitrary time-varying

gravitational fields. Three separate time-open problems are treated; rendezvous,

orbit transfer, and orbit transfer with tangential nominal impulses.

*Performed under contract NAS 12-114, presented at AIAA 7 th Aerospace

Sciences Meeting, January 1969, Preprint No. 69-74.
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Introduction

This is the second of a series of papers on minimum fuel guidance

of high-thrust rockets. The first paper (Ref. 1) illustrated the general approach

by treating the particular problem of guidance from a hyperbolic to a circular

orbit. The succeeding papers are intended to generalize this approach to more

general classes of guidance problems. This generalization will be carried out

in several stages. The present paper will consider the general case of time-

open impulsive guidance. Later papers will extend the analysis to finite thrust.

There is a well-develcped theory for minimum fuel impulsive guidance,

e. g., Refs. 2, 3 and 4. However, these references consider only the case of

an unpowered nominal trajectory. The nominal trajectory around which the

analysis is linearized is a coasting arc. The present paper is intended to

generalize these results to nominal trajectories containing one or more finite

impulses. The analysis will consider three different problems. The first

problem to be treated will be minimum fuel guidance for time-open rendezvous.

The second problem will be time-open orbit transfer, and the third problem

will be an important special case of the second, where one or more of the

finite impulses is tangent to the velocity vector.
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Mathematical Model

The analysis d the present paper is linearized about a nominal

trajectory containing one, or more, finite impulsive velocity changes. This

nominal trajectory must be an optimal trajectory minimizing the sum of the

absolute magnitude d its impulses for transfer between its terminal states.

The problem considered is the deterministic problem of determining the

minimum impulse transfer from a given state in a close neighborhood of the

nominal state at a given initial time to the terminal state with time open. The

nominal trajectory may lie in a general time-varying gravitational field. The

analysis is a first order analysis neglecting second order terms, It is a_alo-

gous to the neighboring optimal guidance schemes developed for smooth

optimization problems without corners. The problem is complicated by the

possession of corners and the possibility of introducing additional impulses.

However, the problem is simplified because it is a first order analysis, in

general, the problem will be to guide the vehicle from a given initial state at

a given initial time to a final time in the near vicinity of the nominal terminal

time. For the orbit transfer problem the final time may be allowed to become

arbitrarily large; and it may also be possible to extend the initial time arbi-

trarily far backwards in time.
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I. Time-Open Rendezvous

The key concept in analyzing minimum-impulse guidance for time-

open rendezvous is the concept of a noncritical direction. This concept was

originally developed for use in interception problems rather than rendezvous

(Refs. 2 and 5) but is also useful in analyzing rendezvous. Consider the case

where the nominal trajectory has a single finite impulse which accomplishes

rendezvous at a nominal terminal time. If rendezvous were to be accomplished

at a slightly earlier time St, then the point at which rendezvous is accomplished

must be displaced by the negative product of the target velocity vector and the

time change.

5_{ = - VT6t @ t =tf-6t

This position is reached by the intercepter at an earlier time than the nominal

arrival time. If the trajectory of the intercepter were continued to the nominal

arrival time, it would have the position given by Eq. (2) and shown on Fig. 1.

5RI = - VT6t+V 16t =- A"'V'6t @t=tf

This indicates that, if the intercepter will intercept a specified line in space

at the nominal arrival time, then it will (to first order) also intercept the target

at a somewhat earlier or later time. This specified line passes through the

nominal arrival point and has the direction of the nominal finite impulse. This

direction through the nominal arrival point is known as the nul-_criticaldirection

(1)

(2)
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at the nominal arrival time. It represents the one permissible direction of

position variation which will still lead to rendezvous. This noncritical direc-

tion may also be propagated backward in time by use of the state transition

matrix. It will then define a noncritical direction at any point along the nominal

trajectory.

In order to effect rendezvous, it is necessary to control the two

components of position variation in the plane normal to the noncritical direc-

tion. This plane is known as the critical plane. Once the terminal position

of the target vehicle and the rendezvous vehicle has been matched by reducing

the position deviations in the critical plane to zero, rendezvous is accomplished

by a finite impulse which nulls the difference between the target and inter-

cepter velocities. To first order, only one component of terminal impulse

variation adds linearly to the cost; that in the direction of the nominal impulse.

Any small deviations in the velocity vector normal to this direction may be

cancelled by small rotations of the nominal terminal impulse. Such rotations

only increase cost to second order and may be neglected in a first order

analysis.

The foregoing considerations indicate that only two components of

position and one component of velocity at the nominal final time must be con-

trolled for time-open rendezvous. This reduces the original 6-dimensional

parameter space to a 3-dimensional parameter space. If there is only one
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finite impulse, then the analysis for unpowered nominals in Refs. 2, 3 and 4

may be applied without change to this 3-dimensional parameter space. That

analysis indicates that the optimum solution has no more than three impulses.

One of these impulses will represent a variation in the magnitude of the nominal

impulse so that there are, at most, two midcourse impulses.

The required position correction at the nominal terminal time may

be accomplished with a single midcourse impulse. If this corrective impulse

occurs at a specified time, then the optimum direction of this impulse may

easily be calculated. One component of the impulse will produce the position

correction. This component will lie in the critical plane. There will also be

a component of the midcourse impulse in the noncritical direction. This com-

ponent will be used to reduce the magnitude of the large terminal impulse and

will result in an overall saving in impulse magnitude and fuel. The total change

in impulsive velocity is given by Eq. (3).

_6V = 2 +u u - u
c nc 5 u nc 5 u c

nc c

The optimum magnitude of the velocity component in the noncritical direction

may be found by differentiating Eq. (3)t and solving for the stationary minimum

point given by Eq. (4).

5u
* HC

U =

L - --nc ._

(3)

(4)
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The total cost of the optimum correction at a specified time is given by Eq. (5).

r, sv*
[  UncJ lucl

I

u c Uc

In the particular case treated in Ref. 1, the midcourse correction

should be made as early as possible and there will be only one midcourse

impulse for the minimum fuel solution. This behavior will be typical of most

cases as the time approaches the terminal time. However, in other cases as

many as two midcourse impulses will be required to minimize the fuel con-

sumption. It is also possible that a single impulse at a time later than the

time under consideration may be optimum. There are both direct and indirect

approaches to this optimization problem. The indirect method calculates the

primer vector (Refs. 6 and 7) from the direction given by the optimum direction

of a single midcourse impulse at the current time to the terminal impulse at

the terminal time. If this vector is less than unity at all intermediate points,

then the single correction will be the absolute minimum fuel solution.

The direct method is a constructive approach utilizing the convex

hull of the reachable set of terminal states (Ref. 2). This reachable set is

constructed in a parameter space defined by the change in the terminal impulse

magnitude and by the two position components in the terminal critical plane.

Each of these parameters is normalized by the magnitude of the midcourse

velocity change. An optimum maneuver must lie on the convex hull of the

(5)
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reachable sets in this space. The set of all impulse directions at a given time

will define an ellipsoid in the parameter space. Equations (4) and (5) will define

a generator of a cone which is tangent to the ellipsoid and whose apex is at minus

one on the velocity axis (see Fig. 2). If a single correction at the earliest pos-

sible time is optimal, then the cones for all subsequent times will lie inside the

initial cone. If two midcourse corrections are required, then the convex hull of

all the cones will have a plane as one of its bounding surfaces. If a single cor-

rection at a later time is optimal, then one of the later cones will project through

the cone corresponding to the initial time. The geometric construction for these

cases may be reduced to a 2-dimensional construction by using the traces of the

cone on the plane of the position variations. In exceptional cases where such

traces do not produce closed figures, it may be necessary to use another plane

that passes through the cones.

If the nominal trajectory contains one or more large impulses before

the final impulse, then all necessary corrections may be made by utilizing small

variations in these impulses. It is only necessary to consider small variations

of timing and direction of these impulses. Such variations allow control of one

component of position and two components of velocity at the time of the impulse.

These three components may then be propagated to the terminal state by means

of the state transition matrix. Except in exceptional cases it will be possible to

control all three required components of the terminal state by this means. This

control will (to first order) produce no increase in cost. This is shown by the
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fact that the primer vector passing through the two impulses of the optimal

nominal trajectory is stationary with respect to small variations in impulse

timing and direction.

II. Time-Open Orbit Transfer

If the object of the mission is orbit transfer rather than rendezvous,

the particular phasing of the vehicle in the final orbit is unspecified, This means

that there will be a set of noncritical directions arising from all points on the

target orbit in the vicinity of the nominal terminal time. This set of directions

will to first order define a plane in which will lie the velocity vectors of both

the target orbit and the transfer orbit at the nominal terminal time. All trajec-

tories which are close neighbors of the nominal trajectory and which touch this

noncritical plane at the nominal terminal time will also intersect the target

trajectory at a time close to the nominal terminal time. For the orbit transfer

problem it is only necessary to control the one component of terminal position

in the critical direction which is normal to the noncritical plane. The parameter

space which must be considered is only 2-dimensionaltcontaining one position

component and one velocity component. There will be at most one mideourse

impulse in addition to small variations in the terminal impulse. The optimum

midcourse impulse may occur at a time other than the earliest possible time.

In fact, in some cases this single midcourse impulse should occur in the

neighborhood of the terminal orbit rather than in the neighborhood of the transfer
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orbit and at a time later than the time of the nominal terminal impulse. The

latter case is easily analyzed by considering the set of reachable states in the

vicinity of the terminal orbit, as well as in the vicinity of the transfer orbit.

I_. Time-Open Orbit Transfer with Tangential Impulses

In many orbit transfer problems, such as the well-known Hob_mann

transfer, the impulses are applied tangent to the velocity vector. In such a case

the noncritical plane of the preceding section becomes undefined and it is once

again necessary to consider a 3-dimensional parameter space possessing two

components of position variation. This case is similar to the case of time-open

rendezvous and possesses a noncritical direction and a critical plane. As in the

preceding section, it may be desirable to consider midcourse impulses in the

terminal orbit as well as in the transfer orbit. It is possible to have a midcourse

impulse before the major transfer impulse in the neighborhood of the transfer

orbit, as well as a post-terminal-time midcourse impulse in the neighborhood

of the nominal terminal orbit. If there are one or more large impulses on the

nominal trajectory before the terminal impulse, then variations in the timing

and direction of these impulses may be used to control the trajectory. In the

particular case of a Hohmann transfer, these variations will not be sufficient

to control all out-of-plane deviations because the two impulses are located at

singularities of the state transition matrix. In this case it will be necessary to

utilize midcourse impulses in either the transfer orbit or one of the terminal

orbits for controlling the out-of-plane component of the terminal position variation.
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Conclusions

(1) Minimum impulse time-open rendezvous in the neighborhood of

an optimal nominal trajectory requires at most two small midcourse impulses

ff the nominal trajectory possesses one large finite impulse. Two midcourse

impulses may be required if either the nominal trajectory or the deviations

from it are nonplanar. If both the trajectory and deviations are planar, not

more than one midcourse impulse will be required to realize minimum total

impulse.

(2) Minimum fuel, time-open orbit transfer in the near vicinity of an

optimum nominal requires at most one small mideourse impulse if the nominal

trajectory contains at least one finite impulse which is not tangent to the velocity

vector. If both the nominal trajectory and the small deviations from it lie in the

same plane, there will be no small midcourse impulse. In the latter case, the

first order minimum fuel solution will be a single impulse at the intersection

of the two orbits.

(3) For both time-open rendezvous and orbit transfer with two or

more finite impulses, no midcourse impulse will be required unless the finite

impulses occur at singularities of the state transition matrix.
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ABSTRACT

Objections to applying the spheroidal method to calculate a

polar orbit of an artificial satellite are easily overcome.

Previous papers have already treated the behavior in an exactly

polar orbit of the right ascension _, the coordinate for which

the difficulty supposedly occurs. Just as in the Keplerian prob-

lem, it remains constant, except for jumps of 180 ° at a pole.

There remains the case of an almost polar orbit, for which

the calculation of _ may be inaccurate near a pole, unless one

takes special precautions. The present paper first simplifies

the expression for _ for all orbits, polar or not, and then shows

how to avoid the difficulty altogether, by solving directly for

rectangular coordinates and velocities. These considerations

apply both to papers by the author and by Izsak on the original

spheroidal method and to the author's later papers incorporating

the third zonal harmonic into the spheroidal potential.

The present paper simplifies orbital calculations by the

spheroidal method for satellite orbits with all inclinations. Its

main points are the bypassing of the right ascension and the

avoidance of differences of almost equal quantities, so that all

calculations become well-conditioned.
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i. INTRODUCTION

Objections have sometimes been made to applying the author's

spheroidal method to calculate a polar orbit of an artificial

satellite. The coordinates that appear are _, for which the level

surfaces are oblate spheroids, _, for which they are hyperboloids

of one sheet, and the right ascension _. The apparent difficulty

in a polar orbit arises only in _ and then only at a pole.

For an exactly polar_orbit I have already shown by limiting

processes in V1961a and V1961b (I) that the spheroidal potential

leads to _ = constant, except at a pole, where it jumps by _ 180 ° ,

accordingly as we call the orbit direct or retrograde, respectively.

This is the expected behavior, just the same as for a Keplerian

orbit, so that no real difficulty appears. It holds whether or

not the model takes into account the third zonal harmonic, with

coefficient J3"

Although the difficulty was easily disposed of, without

tedious numerical calculations, for an exactly polar orbit, one

might still claim that it remains troublesome for an almost

polar orbit. For such an orbit the calculation of _ involves

a small denominator which almost vanishes near a pole. One then

may very likely lose accuracy in passing by the pole or have to

use special procedures which will increase computer time and

storage demands and which will not elsewhere be necessary. The

present paper shows how to avoid such difficulties.

2. THE AUTHOR'S SPHEROIDAL SOLUTIONI WITHOUT J3

The notation in this section is that of V1961a, corrections

of which are to be found in Walden and Watson 1967, p. 16. The

rectangular coordinates X, Y, Z satisfy

1/2 (I-D 2 ) 1/2X + iY = (p2+c2) exp i_ (i.i)

z = 0H (1.2)

Now by (8.50) of V1961a,

_=n' +F (2)

1. The initial V refers to the author's own papers.
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where F is that part of the expression which varies rapidly near

a pole. Here _' is given by Eq. (9) of the present paper and

where

F = K_

K = JKl sgn e3 '

K 2 = e32_02_22(e22-_32)-l(D02+_22-1-_02_22 )

But

_02+_22 = I+_22(-2alc2)-i

2 2
_0 _2 m (_22-_32)(-2_i c2)

It follows that K 2 = i, so that

-I

(3 .i)

(3.2)

(4)

(4.1 of V 1961a)

(4.2 of V 1961a)

K = sgn e3 = ZI (5)

for direct or retrograde orbits, respectively, in order that the

right ascension _ may correspondingly either always increase or al-

ways decrease. Then

= _' + X sgn e3 (6)

is an exact equation for all orbits, with the spheroidal model.

This is in contradistinction to the results of V1961a, where it

was only shown to hold for polar orbits. Thus the present work

simplifies all calculations with the spheroidal model.

To find the rectangular coordinates X and Y directly, without

first calculating _, insert (6) into (i.I), use

1

2

exp i_ = (I-_02 sin 2 _) (cos _ + i_l-_0zc---_ sin _) (7)

from the last paragraph of V1961b, and then put q_0sin _ and

(i-_02) I/2 =J cos If, from (6.4) and (4.7) of V1961a. The

troublesome denominator (i-_2) I/2 then cancels out, with the

result
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1
2

X+iY = (p2+c2) (cos _ +i cos I sin %)exp io.

for all orbits, direct or retrograde. Here

1

2

Q' _ B3+_3(_22-a32) _0(B3 _+ _2 _02_24

4

-c2 _3 (-2_I) -i/2 (A3v +k_,iA3ksinkv= )

sin 2_)

(8)

Separately
1

X=(p2+c2)2(cos C_' cos _-sin e' cos I sin _i,)

1

2

yz(p2+c 2) (sin _' cos _: + cos _' cos I sin _)

(9)

(10.l)

(10.2)

These expression contain no singularities or rapidly varying

quantities, so that there is thus never any difficulty with a polar

or almost polar orbit. For a strictly polar orbit cos I and _3

both vanish, so that _'=83 and

X+iY = (02+c2) I/2 cos % exp iB 3 (ii)

3. Izsak's Spheroidal Solution

Although Izsak (1960, 1963) suggested using a slowly rotating

reference plane to avoid the polar difficulty, actually the same

transformations hold for his solution of the spheroidal problem.

For the sake of accessibility, I shall refer to his 1963 paper.

In making the comparison, note that my symbols are to be changed

as follows: _ _ e, _ _ 0, _0 _ s, and 83 _ _._ others remain the

same. Then, with use of Izsak's Eqs. (3), (91), (37), and (63),

one finds again the equivalent of the present Eqs. (i0) for the

rectangular coordinates X and Y. Note that Izsak's expression for

_' contains (l-s2) I/2 in the numerator and l-e 2 in the denominator

of each term except _,. The l-e 2 in such a denominator does not

necessarily produce a singularity as e-_ i, since each (l-e2) -I

is multiplied by _-c/a and p z a(l-e 2) is a quantity analogous

to the semi-latus rectum in a Keplerian orbit. In such an orbit
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p > 0 for any orbit that does not intersect the center of the

planet, even if e=l. Incidentally, the same powers of p occur in the

coefficients B 3, A 3 and the A3k'S of V1961a.

4. Isolation of the Riqht Ascension

In either solution, the quantity here called X is the sensi-

tive part of the expression for the right ascension _. If one

actually wants values of _ near a pole in an almost polar orbit,

it is better to rewrite Eq. (7) as

1

exp ix = (cos2_cos2I sin2_)2(cos_ +ilcos Ilsin _)

One thus avoids calculating the difference of two almost equal

numbers in the denominator. Then _ is given by (6) and (12).

(12)

5. Velocity Components, with J3=0

On taking the logarithmic derivative of (8) and multiplying

the result by X+iY, we find

X+iY-(P2P----_ + i_' 1-\p +c
so that

1

P-_ X_yd,+ 1p2+c2) 2_: -- -2 T
p +c

1 .

(02+C2)2
(X+iY)+ (-sin@ +i cos I cos _)_¢iQ'

(13)

(-sin _ cos n'-cos I cos _ sin _')_

(14.1)

1

= --L_2 2 Y+X_'+(92+c2) (-sin _ sin _' + cos I cos _ cos _')#

p +c

Differentiation of (1.2) gives

: :  p+ 0Pcos (lSl

These equations contain neither small denominators nor differences

of almost equal quantities. Here

(14.2)
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! !

(_) 2 2 2 -i
_= ae (0 +AD+B) (D2+c2_ 2) sin E

from p. 6 of Bonavito 1962, and

1 1

2

= _0cos; ,_= (a22-a32) (l-q2sin2_)2(D2+c2_2)-icos _!,,

(16)

(17)

from p. 15 of walden 1967, after a few transformations. Here

q=_0/_2. Then

1 1

-i 2
= _;l(a22-a32) 02+c2_ 2) (l-q2sin2$)

Finally, by Eq. (9) of the present paper,

(18)

1

2

6,- _3(_22-_32)_oCB3+_ _02_24cos 2,)$

1

2 4

2 (A3+k_ikA3kCOS= kv) 6-c %1-2%) (19)

Thus we also need v. With

0 = (l+e cos v)-Ip,

from (5.12) of V1961a, where p=a(l-e2), we find

(20)

6 = e p2 sin v
P

Comparison of (16) and (21), with use of the anomaly connection

1

sin E = _ (l-e2)2sin v

P

then gives

(21)

(22)

1 1

2 2

a 0 J 02+c2_2

Eqs. (14),(15),(16),(18),(19), and (23) then give the complete
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algorithm for finding the velocity components in the spheroidal

model, when J3 is not included.

6 The Author's Spheroidal Solution_ with J3

The notation in this section is that of V1966, corrections of

which are to be found in walden and Watson 1967, pp. 19, 20, 22,

27, and 31. With this solution

= _'+G sgn _3' (24)

g

where _ is given in Eq. (41.4) of the present paper and where

G is given by Eq. (150) of V1966, viz

! _!

= l_31a_lu2(1-s)2[(hl+h2) X0+(hl-h2)xI] (25)

From Eq.(158) of V1966, we have
1 1

2 2

(hl+h2)x0+(hl-h2)Xl=2-1(l-c2) [ (I-C2)2-CI 2] (E2'+E3') (26)

If u is a solution of the cubic equation (27) of V1966, then by

(32.1) and (32.2) of that paper

C 2 - __
a0P 0

so that

(l-c2) 2-CI 2

1 -C 2

where

R --

2
c u

(16), CI=2u6P0-1(i-C2S)-I(I-c2 ), (27)

-2 2c2
a0P0/ k 0/

c__ (l-S) -R , (28 .i)
a0P 0

2

(l-S) ( 1 _ c ) (28.2)

u a0P 0

By (27) of V1966, however,

2

R = _ -i c (l-s) (29)

u a0P 0

(28) then shows thatInsertion of (29) into
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(I-c 2)-I[ (I-c 2)2-C12 ] = (1-s)-l(u-S) , (30)

which, with (26), gives
1 1

_ --

(hl_h2)_K0+(hl-h2)_l = 2-I(u-S)2(I-s) (E2'+E3') (31)

Now, by Eqs. (21.2), (18), and (26) of V1966, for all orbits,

direct or retrograde,

1

-i _ !
I_31_ 2 u - (U-S) 2

(32)

Then, from (25), (31), and (32),

1 e

G = _ (E2'+E 3 ) (33)

for all orbits, polar or not, and direct or retrograde. This

is the same as the expression given in Eqs.(159) of V1966 for the

sensitive part of _ in the case of a polar orbit. Here, however,

we have shown that it holds for all orbits.

t
To evaluate G, place E2'= E2,($+_/2 ) and E3.=E3 (_- 7) into

Eqs.(104) of V1966. The results are

e2-sin _ e3+sin $
cos E 2 ' =

l_e2si n _, cos E 3' =
1 +e3sin

! 1
2 2 2

sin E 2 (l-e2) cos ,i, (I-e32) cos ,_,

' _ l-e 2 sin _ sin E 3, z - l+e3sin %

(34)

where

e2_(l-p)-iQ, e3=(l+p)-i Q , Q2_p2+s , (35)

with 0 _ e 3 _ e2_ i, by Eqs. (i00) and (47) of V1966. Then, by

(33),

cos(E2'+E3') = cos 2G = 2 cos2G-i

From (34) and (36) it then follows that

(36)
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1

_ I( + J(l-e22)(i-e32)) _22 l+e2e3 cos

co_ G = k(_) 1 , (37)

[ (l_e2sin _) (l+e3sin _)]2

where k(_)=+l.

We now show that k(_)=l for all %. First note that E 2' (y)

is related to y in the same way that an eccentric anomaly is re-

lated to a true anomaly. The same holds for E 3' (y). Thus each

increases as y increases, by Eq. (160) of V1966, so that G--2-1x

[E 2' (_+_/2)+E 3' (_-_/2)] is a continuous monotonically increasing

function of _.

Also, from the definitions, E2' (y) and E3'(y) are both equal

to nU for y = n_. Thus

1

G = _ for _ =(n+ _)Tl, (n=0,1,2...) (38)

so that cos _ and cos G both vanish for _=(n+ 21-)_. Now consider

a small interval (n+ i)__¢ <__ _' =< (n+ 21)_ + _. Since G always

increases with increase in _, the corresponding changes A cos

and _ cos G are both negative if n is even and both positive if n

is odd. Thus k(_) > 0 over any such inteval. But k(_) = +i for

all _ and since cos G and thus k(_) are continuous functions of _,

it follows that

k(_) = 1 for all

Before we rewrite (37) with omission of k(_), let us first

simplify it.

which is

we obtain

(39)

To do so, note that by (35) and by (48) of V1966,

I] = p + Q sin _', (40)

(l-e2sin _) (l_e3sin _) = (l-p2)-l(l-_ 2) (41)

Now from Eq. (32.3) of V1966

2P = r (I-S) 6, (42.1)
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where

r e

6 =_- a21 Ij3l (42.2)

r = 2 (I-C2S) -lu/Po (42.3)

Thus 6 = O(J 2) and r -- O(i). Eqs. (35) and (42) then show that

l+e2e3 + j(l_e22) (i_e32) = (l_p2)-l(l+S+(l_S)%/l_r262 )

On inserting (39), (41), and (43) into (37), we find

(43)

1 1

_! y

cos G = 2 2(i-_2) [I+S+(I-S)%/I-r262_ ] cos

We also need sin G in calculating rectangular coordinates.

To evaluate it unambiguously first note that

(44)

2 sin G cos G = sin (E2'+E3') (45)

=(l-n2) -1(I-P2)[ (e3 l_-e22 -e2_ l_-e32)+_l-_e22 +%_i_-e32 )sin_]cos_

(46)

by (24) and (31). Then from (35), (42), (44), (45), ana (46) it

follows that

1 !

sin G = 2 2(i-_)2
1

(I-_2) 2

{Q( i/_-_-r% - i+/i-+_)+[ (l+P)/l-r5 +(l-P)/l_]sin1_}

1

[ I+S+ (I-s)_ ]2 (47)

TO check this, note that for J3 = 0 we have 6 = O, P = 0, Q = S 1/2,

and S = sin2I, so that (47) then reduces to

1

sin G = (i-_ 2) 21cos Ilsin 4, (48)

agreeing with (7) for sin _.

If one really wants values of the right ascension near a pole,

one can use (24), (44), and (47).
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It is then advisable, however, to rewrite the i-_ 2 in the denomi-

nator by using (35) and (40). One finds

i-_ 2 = cos2_-(p2+2pQ sin _)+(1-S-p2)sin2_, (49)

resulting in the same kind of simplification near a pole as does

(12).

Near a pole in a nearly polar orbit the term -(p2+2pQ sin_)

in (49) is much smaller than the positive term (l-S-p2)sin2_. To

verify this statement, note that in a nearly polar orbit, s_l, Q%I,

P<<l, and near a pole Isin _I_ i. Then from (32.3) of V1966

2 _ 7
P=(I - c Su) -I _ u(l-S) _ _ (l-s), (49.1)

a0P0 Po

so that

and

Thus Eq.

(47)

7
IP 2 + 2PQ sin _l _ _ (I-S) (49.2)

(l-S-p2)sin2_ _ I-S

(49) gil,es no trouble near a pole.

In rectangular :oordin_tes we find from (]), _24), (44). and

(49.3)

1

X = (_2+c2) [HlCOS _' cos _ -HI11_--S sgne3sinQ'(H2+H3sin_)]
(50.1)

!

y = (92+c2)2[Hlsin n' cos _ +HI11_--S sgn_3cosn'(H2+H3sin_)]
(50.2)

and

Z = p_-6 , (5O.3)

from (1.2) of V1966. Here

1 1

H1-- 22[1 + S ÷ (l-S) i_-r262 ]2 (51.i)

1 Q( _ _ _ ) (51.2)
H 2

H 3 = ½[ (I+P) _i_ + (l-y) 1+/i_-r6 ] (51.3)
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and

1
4

C,=_3_c2 3(_2_I) 2 (A3v + 7 A3ksin kv)
k=l

3
+_3_21u2(B3 _- _ CIC2Q cos _ + _33 C22Q2sin 2@), (51.4)

32

from Eq.(150) of V1966. Like Eqs.(10) these equations contain no

singularities, even for a polar orbit. Moreover they hold for all

oribts.

For an exactly polar orbit we have S=I, P=0, Q=I, _3=0, and

C'=_3" The X and Y equations then become

1

X + iY = (02+c2)2cos _ exp i63, (52)

as for the case J3_0 of Eq. (ii). The Z equation, however, is

Z = 0_-5, where 5 =(re/2)J211J3 I, so that the orbit is still changed

by the J3"

7. Velocity Components, with J3 Accounted for

From Eqs. (50.1) and (50.2)

1 1

. 2 2

X+iY=(02+c 2) [HlCOS_+iHll(l-s) sgn_3(H2+H3sin_)]exp i_' (53)

Logarithmic differentiation of (53), with multiplication of the

result by X+iY, gives

1 1

X+iY=( 2P-_2 +i_') (X+iY)+(o2+c2)2[-Hlsin_"+iHll(1-S)2sgn_3H3 cOs_]_expiC'

0 +C (54)

so that

1 1

X= _ " (02+c2)2[_Hlsin$cos e'-Hll(l-S)2sgn_3H3cos_sinC']_2 2 X-YC'+

+c (54.1)

186



IMPROVEMENTOF THE SPHEROIDAL METHODFORARTIF IC IAL SATELLITES

1 1

_, -i 2
y= _ Y_XQ'¢(_2_c2)2[-Hlsin_sin +H 1 (l-S) sgn_3H3cos_cos_ ]#

_c (54.2)

Also

by (15). Eqs. (16) and (23) still hold,

and v are as for J3=0.

For 6' we find from (51.4)

so that the equations for

1 4

_, =_c2cz3 (_2 CZl ) 2 (A3÷k_lkA3kCOSkv) _

1
-i 2 3

+_3a2 u (B3+ 4ClC2Qsin_+ 3i_ c22°2c°_2_)i (55)

The new expression for _ is still lacking. From p. 14 of

Bonavito 1966, we find

=Q oos i=-z
p +c

so that

1

--_-J_I-CI_-C2_ ) cos "f ,

1

2

(i 'CI_-C2 q2)
, = 2 22

(56)

(57)

Here

2

1 = i+ c (l-S)+

u a0P 0

(l-S) (i- c_c___ S)
a0P 0

2 2

[ I* c--E----(I-2S) ]

a0P 0

+ 0(J24), (58)

2 Z_b_ 2 1 4j3Zj 2 2c = CO = re J2 - 4 re (59)

187



I MPROVEMENTOFTHE SPHEROIDAL METHODFORARTI FI CIAL SATELLITES

The equations of this section reduce to those of Section 5, if J3

is equated to zero.

8. The Improved Algorithm for the Spheroidal Model, with J3

Begin with Section 12 of V1966 and follow it through the

third line on p.45, viz, _ = p+Q sin %. Instead of then calcu-

lating E 2' and E3', however, replace that calculation with Eqs.

(42), (50),and (51) of the present paper. This changed pro-

cedure not only simplifies the calculation of X# Y, and Z for

near-polar orbits but bypasses the right ascension in all cases.

To calculate the velocities X, Y, and Z, use Eqs. (54) through

(59) of the present paper.
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Appendix I

Algorithm for Satellite Position Vector and Velocity,

if the Potential V = -uD(D2+c2_2)'_J 3 = 0)

Given

U, r e , J2 a, e, I, _i' _2' 83

Compute once for each orbit:

c02=re2J2 , _0=sinI, p=a(1-e2), D=(ap-c02) (ap-co2_02)+4a2c02_02

2 2 -1 '

D'=D+4a2c02(I-_02), /%=-2ac02D-l(l-_02) (ap-c02_02)<0' B=c0 _0 D D

1

bl=- IA>0, b2--B2, ao=a+bl>a' P0---c02a0 l(l-_lO I)+aaOIpD-ID'

--, c02_02 cosl,
_2= (Upo)2 _3=e2 a0P 0

2 1

c O

_' = 0_(i+ _ cos2I) 2
a0P 0

Also, with Rn(X) =_ xnPn(x-l),

-2 Co 2D -I

_2 _ _ ' q=_0_2

compute

! - _n b " i

A1--(1-e2)2; (_)P_/_---_-I_ Rn_2[ (l-e2) _]
n----2\_ / "'\_2 /

1 !

A2=(l_e2)2"-P_in_0(b2/p)npn(bl/b2)Rn[(l_e2)2]
, where

i

D2i =
n=0

(-I) i -n (c0/P) 2i-2n (b2/p) 2np 2n (bl/b2)
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i

D2i+l = _ (-l)l-n(c0/p)
n=0

2i-2n
(b2/p)2n+iP2n+l(bl/b 2)

1 i
co

A3=(l-e2)2p -3 _ DmRm+2[ (l-e2) 2]
m=0

1 3 2 15 4 175

B I = 2_-lq-2[K(q)-E(q_]=f- " " "_ 2 + i-6 q + _8 q + 2-048 q6+ ......

1 9 4 25 6

B2 = 2_-iK(q) _ = i_ _q2+ _ q _ _6 q + ....

, 2 2 -i
a0 = ao_Al+C0 _0 A2BIB2

2n

= 12__m'.//__--_ m-I (2n) :D 0

_m 22m(m_) 2 n_l 22n(n:) 2

- 1
-- co

B 3 =I-(i- _]22) 2 - _ Ym_22m
m=2

I !

-- 3 -3 _e2 2b24e2A11 = ¼ (l-e2)2p-3e(-2blb22p+b24) AI2 = _ p (i )

1

A21=(l_e2)2p-le[blp-l+(3bl2 b22)p-2_ _9 blb22(l+e_)p-3+ 83 b24(4+3e2)p-4]

i

2 2 -i e 2 2 2

A22=(I -e ) P [_--(3b I -b 2 )
-2 9 2. b 2 -3 3 b24(6e2+e4)p-4]p -_e_1 2p +_

1 1

-- e 3 3 (l_e2)2p-5b24e 4
A23=(I-e2)2p I 8-- (-blb22p-3+b24p-4)' A24- 256

1

-- 3 2 _p-2 1 2 2A31=(l-e2)2p-3e[2+bl p-l(3+ _e ) (_b 2 +c O ) (4+3e 2)]
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1

.. 2.5-3re 2 3 -i 2 -2

A32=tl-e j p L--_ + _I p e -p

e 4 3 2 ,I. 2 2.

(_- + _ )_D2 +co ;]

1 1

A "i 2,5-3 3r i. -I 1 -2.1. 2 2 I,, 2,3 -5 4.1. 2 2,
33=_ -e j D e L_Dlp -3--p _D 2 +c 0 )], A34-- - _-e J p e l_D 2 +c O J

1

,-1 ,A2B_I ' e,:a_lae <2_2=a0 _2 e

2 -i 2 -i k2=_l+_2e_l(a0+Al)A2-1_l=_l-C0 _2e2 _0 BIB2 '

_3

1

-2

k4 = a0-1(AI+C02_02A2BIB2 -I)

k 5

! -!

___Oo_ o/,_,_o';. ,._-- _,_;_. _;

For each point at time t, now compute

i) Ms=2_ l(t+kl) _1,s= 2_2(t+k2)

2) Solve for E0: Ms+E0-e'sin(Ms+E0)=Ms

3) To find v0: Place E=Ms+E 0 in the anomaly connections

1

cos v = (l-e cos E)-l(cos E-e), sin v = (l-e cos E)-l(l-e2)2sin E

and solve for v = Ms+V 0

4) _0 = k3v0

1 k5sin(2_s+2_O)5) Compute M 1 = -k4v0+
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6) Then El=[l-e'cos(Ms+E0)]-IMl - {e'[l-e'coS(Ms+E0)]-3Ml2sin(Ms+E0 )

7) Place E=Ms4Eo*E 1 in the anomaly connections and solve for

V=Ms+VO+V 1

2

8) Then _l=X6[A2Vl+kUiA2ksin(KMs*kV0)]+k7sin(2_s*2_O)=

9) Compute

9

M2=-a01[AlVl+k_lAlksin(kMs+kV O)

4

+ 6_44 sin'(4_s+4_0) }]

2

1

+hIBlh - _ hcos(2_s+2_0 )- _ sin(21_s+2_01

i0) Then E2=[l-e'cos(Ms+E0_El)]-iM2

11) Place E=Ms+E0+EImE 2 in the anomaly connections to find V=Ms+V0+Vl+V 2.

12) Then _2=k6[A2v2_A21VlCOS(Ms+V0)+2A22VlCOS(2Ms+2V0 )

+A23sin(3Ms+3Vo)+A24sin(4Ms+4Vo)]+2k7[_1cos(2_s+2_ 0)

3-q_ sin (4_s+4_0) ]+ 3_ sin(2_s_2_O) - -64
8

Then

E=Ms+E0+EI+E2 , V=Ms+Vo+Vl+v 2, _'='_S+_'0+_l+_2

13) _=a(l-e cos E)=(l+e cos v)-ip, _=_0sin

I

14) _'=p3*_3_-l(B3_+ _- _02_]24sin2_)-c2_3 (A3V+kEiA3ksin__

Then the rectangular coordinmtes are given by

1

15) X=(p2+C02)2(cos _'cos_-sin _'cos I sin _)

kv)
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16)

17)

zs)

1

Y=(02+c02)2(sin Q' cos '_ + cos O' cos I sin _)

Z = 0_

To find the velocity components, compute

1

v. _i__5 2 1• I_2+A0+B)2

o L a0 _ p2+c02_2

19) p = P 02sinv

1

20) % a2' (l-q2 sin2 _) 2-
= 2 2 2

o +c o

21)

Then

22)

23)

24)

_',,_3,_-I(B3+_ _02_%os 2,),;,

1

-o2o3 )- 'A3 k ikA3kooskv)_

1

X= _2 2 X-Y6'+(p2+c02)_(-sin_cOs_'-cOs I cos*sin_')

+c o

1

Y=DPY+x_'+(02+Co2)_(-sin%22 sinC'+cos I cos $ cos _')_

0 +C o

= _+no o cos _ $
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Appendix II

Algorithm for Satellite Position Vector and Velocity,

if the Potential V = -u(=+_6) (O2+c2_2)-l(J3_O)

Given U,re,J2,J3,a,e,S,Bl,_2,_ 3

Compute once for each orbit

1 IJ3 I
c02=re2j2, 6= _ r e J2 ' c2=c02-62' P=a(l-e2)

A ---

2

-2a2(ap-2S)(1-S)+ 822 42 {I+ c (3S-2)}S(1-S)--¢--- _

4c 2 62(3ap_4a2_c2)S(l_S)(ap-c 2) (ap-c2S)+4a2c2S+

P

1

1
B = c2+(2a)-l(ap-c2)A, bl= - _ A, ao=a+b I, b2=B 2

1

-l(B+ap-2Aa-c2) d2=(_p0 )2, u fromPO=a0

L_! (1-S)ll-c__ s2 2
aOP0 c

u-l=l+ c__q__ (l-S)+ 2 ]2 ' C2-a0PO [i+ c____ (I-2S) a0PO

aOP 0

2 2

Su%-l, 26 c
C 1 = (i- -- u(l- -- u),

aOP 0 P0 aOP 0

With Rn(X)=xnPn(x-l), compute

1

- ---- u, e3=_+c_ (l-su-l) 2

+ for direct orbit

- for retrograde

2

c --_ u (l-S) ,
P=(l- _ Su) -I Po

1 1
2-2-_

A1=(l-e ) P Y(b_/p)nPn(bl/b2)Rn_2 [ (l-e2) 2]
n=2

1 1

A2=(l-e2)2p -I 7_ (b2/p)npn(bl/b2)Rn [ (l-e2) 2]
n=O
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1 t
m oo

A3=(l-e2)2p -3 Z DmRm+2[ (i-e2)2], where
m-0

i

D2i = Z (-l)i-n(c/p)2i-2n(b2/p)2np2n(bl/b2)
n=0

i
2i-2n .... 2n*l

(-l)i-n(c/p) ID2/p) P2n+l(bl/b2 )
D2i+l= n=O

3 2p-3 e 3 -3 --All = 4 (l-e2) (-2blb22p+b24) AI2 = _ P (l-e2)2b2 4e2

1

9 e 3 4
A21 = (l-e2)2p-le[blp-l+(3b12-b22)p -2- _ blb22(l+ _2)p-3+ 8b2 (4+3e2)p 4]

1

A ,. 2,2 -ire 2 9 3 (6e2+e4) _4]22:_z-e ) P [_ (3b12-b22)p 2- _ e2blb22p -3+ _ b24

1
-- 3

e (_blb22p-3+b24p-4)A23=(I-e2)2p -I _

1

3
A24- 256 (l-e2)2p-5624e4

1

3 e2)__2 1A31=(l-e2)2p-3e[2+blp-l( 3+ _ (2 b22+c2) (4+3e2)]

1

3 bl_le2__2 e 4 3 e 2 1 2 2= (_b2 +c )]

1

,. 2,2-3 3rl . -i i P-2 1 b22+c2)] 'A33=L_-e ; p e [i-2-nlp -_ (_ A34_

1

1 .i_ 2 2, 4
32(l-e2)2p-51_p2 +c ;e

Q = (p2+s)i/2

1 CiP+(_ C12 + 1 1 Q2 9B2=I- _ 2 C2)(2 )_ _-_ C2204+0(J23)

i ? 9 q 9 _ 9 A I< 0 6

BI'=_-Q-+p--_-CIP0-+_(4C2+3CI_)_+ _ c2_Q +O(,.T2_)
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1 3 3 1
B3= - _C 2- 8 C12- g C22( I+ _ Q2)+O(J23),

3 Q2 1 Q3 Q4

BII = -2PQ+ _ CIQ3 , BI2 = -(_ + _ C2Q4), BI3= _C1 _, B14=C2 ___

9 1 1
B21= -C2PQ+ _-_ CLC2Q3+ _ CIQ, B22 = - _[ (4C2+3CI2)Q2+3C22Q 4]

1 3
B23 = - 16 ClC2 Q3' B24- 256 C22Q4' r=2(I-c2s)-I -iuP 0

a0'=a0+AI+C2A2BI'B21,

e' =a e a01

1 1

(a0,)-I 2_)2=_2 u 2A2B21(a02_i= a0

-i

il=_l-C2_2_21Bl"B21, _2=_i+_2e2 I(a0+AI)A 2,

(a_0)_ 2 -i g ---
X4=a;I(AI+C2A2BI'B21), k5= c _2 u , k6--

_! ! I- ! 1
1

Hl=2 2[I+s+(I-S) (1-r2_2)2] 2 H2= _ Q[ (l-r6)2-(l+r6)2],

i 1
1

H3= _ [ (I+P) (l-r6)2+(l-p) (l+r6) 2

Compute for each point

i) Ms=2_ 1 (t+ll), _s=2n92 (t+12)

2) Solve for E0: Ms+E0-e'sin(Ms+E0)=M s

3) To find v0: Place E=Ms+E 0 in the anomaly connections

4) _0=13v0
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5) Compute MI= -k4v0-_l_Bl_sin(2_s+2_ 0)

-i
i,

6) Then El=[l-e'coS(Ms+E0)] Ml-_e [l-e'cos(Ms+E0)]-3M!2sin(Ms+E0 )

7) Place E=Ms+E0+E 1 in the anomaly connections and solve for V=Ms+V0+V 1

2

8) Then _l=k6[A2Vl + _ A2ksin(kMs+kV0)]-B21B21coS(_s+_0)-B22B2 I"
k=l

sin(2_s+2_0)

-i[ 2 +151Bl,_l+BllCOS
9) Compute M2=-a 0 =AlVl+k_iAlksin(kMs+kV 0) (_s+_0)

+2Bl2_ICOS(2_s*2_0)+Bl3COS(3_s+3_0)+Bl4sin(4_s+4_0)} ]

i0) Then E2=[l-e'cos(Ms+E0+El)]-iM2

ii) Place E=Ms+E0+EI+E2 in the anomaly connections to find

V=Ms+V0+Vl+V 2

12) Then _2=k6[A2v2+A21VlCOS(Ms+V0)+2A22VlCOS(2Ms+2V0 )

+A23sin(3Ms+3V0)+A24sin(4Ms+4V0)]-B21[-B21_Isin(_s+_0)

+2B22hcos(2_s+2_0_+B2aeos(a_s+a_0)+B24sin(4_s+4_O)]

Then E=Ms+E0+EI+E2, V=Ms+V0+Vl+V 2, _=_s+_0+_l+_ 2

13) _=a(l-cos E)=(l+e cos v)-ip, _=P+Q sin

- 1 1

14) n'=_3-C _3 (A3V*kZiA3ksin= kv)+_3_21u2(B3_- 43-ClC2Qc°s_

+ _ C22Q2sin 2_)
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Then if sgn _3 = _I fcr direct or retrograde orbits respectively,

the rectangular coordinates are

15)

1 1

X=(02+c2)2[HlCOS Q'cos'i-Hll(l-S)2sgn_3.(H2+H3sin_)sin C..']

l_ 1

16) Y= (_2+c2) 2[ Hlsin_' cos _+HII (I-S) 2 sgn_3 (H2+H3 sin_) cosQ' ]

17) Z=_-6

Velocity C_omponents

18)

1 1

;=__2 (p2+Ap+B)2
0 a 0 p2+c2_2

e •

19) p= _ 02sinv v

20)

21)

½(02+c2 2= (l+Cln-C2_)

-i

0'= -c2a3 (A3+kYlkA3kCOS= kv)v

!
3 3

+_3_21u2(B3 + _ CIC2Q sin_+ _ C22Q2cos 2_)_

198



IMPROVEMENTOF THESPHEROIDAL METHODFORARTIF IC IAL SATELLITES

22)

23)

1 !

X= PP X_y_,+(p2+c2)2[_Hlsin_cosQ,-Hll(l-S)2sgne3H3cos_sinQ,]i,
2 2

p +c

1 !
• -i 2

Y= _ Y+X{_'+ (p2+c 2) 2[ _HlSln_slnQ,+H 1 (l-S) sgncz3H3cos IcosQ' ]$
2 2

P +c

24) _= _;+ pooo_ ;
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DEPENDING ON A SMALL PARAMETER

by

Ahmed Aly Kamel

Stanford University, Stanford, California

ABSTRACT

The theory of perturbation based on Lie transforms

is considered. Deprit's equation is reduced to a

form which enables us to generate simplified general

recursion formulae. These expansions are then modi-

fied to speed up the implementation of such pertur-

bation theory in the computerized symoblic manipula-

tion.

I. INTRODUCTION

If a system is described by a Hamiltonian depending on a small para-

meter, then canonical transformation can sometimes be obtained using a

yon Zeipel generating function (See for instance Brouwer and Clemence 1961).

In such a case, the transformation is implicit because the generating

function is in mixed variables (the old coordinates and the new momenta).

The shortcomings of yon Zeipel's method, when the generating func-

tion itself depends on a small parameter, were felt by Breakwell and

Pringle (1966), and Deprit (1966), when they used a yon Zeipel generat-

ing function to remove the short period terms from the Hamiltonian of
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a particie in the neighborhood of the trianguiar points in the restricted

problem of three bodies. Breakwell (See Schechter 1968) recognized,

after comparing with Deprit et al (1967), that the long period part of

the second order Hamiltonian derived in mixed variables was misleading,

and that it was possible to obtain a different representation in terms

of new variables only. Using this suggestion, Schechter (1968) obtained

a more valid second order expression. Deprit (1968) attacked the prob-

lem using Lie transforms and extended the expansion to include higher

orders. In this paper Deprit's recursive algorithm is reduced to a form

which enables us to generate simplified and modified general formulae

(Section 3 and Section 4).

2. BACKGROUND

A Lie transform may be defined by the differential equations

dx

_-_ = Wx(X,X,t ;6) (2.1a)

dX

d--£ = -Wx(X'X't; 6) (2.1b)

dt
-- = 0 (2.1c)
dE

dF

d--_ = Wt(x'X't; E) (2.1d)

with the initial conditions x = y, X = Y, t = t, and F = O at c = O.

The foregoing equations define a canonical transformation. This can be

shown as follows: for any E, the differentials dx, dX, _x, 5X, and
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5F produced by the initial changes dy, dY, dt, 5y, and 5Y satisfy

the equation

d [dx. SX - dX. Sx - dtSF] = 0 (2.2)

Hence, dx. SX - dX. Sx - dtSF is independent of g and equals its value

at g = O, so that for F = H(x,X,t;6) - K(y,Y,t;6)

_.SX - _(.Sx - 5H = :_.SY - _{.Sy - 5K. (2.:3)

Therefore, if x and X satisfy the canonical equations

= HX, _( = -Hx ' (2.4)

then, also y and Y satisfy the canonical equations

:;, = K _ = -K (2.5)
y , y

Now, take any indefinitely differentiable function f(x,X,t;g) that can

be expressed in terms of x,X,t and E as a power series in e, in

the form

_ cn _[_e n _ _ nf(x,X,t;6) = _ f(x,X,t;e = _, fn(X,X,t)

n---O e=O n=O (2.6)

*Notice that

d

_dx = dW x = Wxx.dX + WXX. dX + Wxtdt ,

Sx = 5W x = WXx. SX + WXx. SX ; ere,
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then, interms of y,Y,t, and _ asa power seriesin _, it takes the form

f(x,X,t; e) = _ f(x,X,t; e) = _, (y,Y, t)

n=O _=0 n=O

(2.7)

where

r ]
f (x,X,t) = J_ f(x,X,t; c)| , n > O;

n Lbcn j e-=-o -

(2.8)

df (x,X,t;c) = _f f dx f dX (2.9a)
d-'_ -_c + x'd_ + X'dc '

and

b ]f(n)(y,Y,t) = f(x,X,t;c) , n > 0 . (2.9b)

e=-O

Notice that

fo(x,X,t) = f(x,X,t;O) , and f(O)(y,Y,t) = f(y,Y,t;O)

\

Using Eqs. (2.1a) and (2.1b), Eq. (2.9a) can be written as

df _f

d'_ = T_ + LW f (2.10)

where L w is a linear operator called Lie derivative generated by W,

and is defined by

L w f = (f;W) = fx. WX - fx. Wx (2.11)

Taking f = x,X, and F in Eq. (2.7), and using Eqs. (2.1a), (2.1b),

and (2.1d), one obtains the following

cnx = y + _ y(n)(y,Y,t)

n=l

EnX = Y + _ Y(n)(y,Y,t)

n=l

(2.12a)

(2.12b)
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n R(n)H = K - _ (y,Y,t) ,

n=l

(2.12c)

where, for n > I we have

(n) [dn-1 )
Y = \dEn--------_WX e'=O

y(n) fd n-I

= -\dn_-----r Wx)_=o

(n)=_fdn-___L
\dO-1 _/

(2.13a)

(2.13b)

(2.13c)

In particular, for a generating function W of the form

W(x,X,t;_) = _ Wn+l(X,X,t) ,

n---O

(2.14)

and f(x,x,t;E) of the form given by Eq. (2.6), Eq. (2.10) yields

with

where

df I en f(1)d---_= _.' n

n><)

(x,X,t)

f(1)(x'X't)n = fn+l + I

O<m<n

C n
m Lm+l fn-m

C n n_, , ,
m (n-m) .m.

(2.15)

(2.16)

(2.17a)
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and

Lpf = (f;Wp) , p >1_ (2.17b)

In general, for k > 1, n > O, one obtains

d£____dk f = _ _.'6n fn(k)(x,X,t)

n>O

(2.18)

with

f_k)(x,X,t ) = f(k-l)n+l + _ Cnm Lm+ifn-m(k-l)

O<m<n

(2.19)

Now, letting e = O in the above equation we get the following. (For

the remainder of this paper, this equation will be referred to as De-

prit's equation.)

where

f(k)(Y'Y't)n = f(k-1)n+l + _ Cnm Lm+l f(k-1)n_m

O_m<n

(2.20)

Lpf = (f;Wp) = fy.Wpy - fy. Wpy , p _> 1 (2.21)

Notice that

fnO)(Y,Y,t)( = f (y,Y,t), and _(k), ,Y,t) f(k)
n I O (Y = (y,Y,t)

and

Deprit's equation, together with the functions H (n) R(n) y(n)

y(n) can be best visualized from the triangles of Fig. 1 and Fig. 2.
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fo = f(o)

f (')

i(I) f(2)

/_=) f(3)

, ,) ) _,)/

FIG. i. RECURSIVE TRANSFORMATION OF AN

ANALYTIC FUNCTION UNDER A LIE TRANSFORM.
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H_I) H(z)

H-TRIANGLE

__z -w=t =R(q

t R(2)

_t) R(3)

) /=,(31 R(41

R-TRIANGLE

Wly= y(I)

y(=)

_=) y(_)

y-TRIANGLE

,-W@=Y O)

-w= y(2)

Y-TRIANGLE

FIG. 2, TRIANGLES FOR THE HAMILTONIAN H_ THE COORDINATES y,

THE MOMENTA Y_ AND THE REMAINDER R.
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Finally, the inverse transformation can be written as

y = x + _ x(n)(x,X,t) (2.22a)

n=l

_. ¢n x(n)(x,X,t ) (2.22b)Y =X+ _,

n=l

To find the relation between the

one may eliminate x-y and X-Y

(2.22), and define the functions

_ En
en (n)(x,X,t) = - y(n)(y,Y,t) (2.23a)

q(x,X,t; e) = _ x

n=l n=l

x(n)'s and y(n)'s, x(n)'s and Y(n)'s,

between Eqs. (2.12a), (2.12b), and

q(x,X,t;e) and Q(x,X,t;6) as follows:

e n x(n)(x,X,t) = - y(n)(y,Y,t )
Q(x,X,t;e) = _

n=l n=l

(2.23b)

Therefore, for n > 1 we have

(n)(y,Y,t)qn = x(n)(x'X't)' q(n) = _ Y , (2.24a)

Qn = x(n)(x'X't)' Q(n) = _ y(n)(y,Y,t ) . (2.24b)

3. SIMPLIFIED GENERAL EXPANSIONS

Given the functions fn' fn-l' .., and fo' Deprit (1968) construc-

ted the required functions f(n) f(n-l) and f(O) by introducing

the auxiliary functions f(k) and by moving recursively from the left
n

diagonal of Fig. 1 towards the right diagonal. One might as well
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construct the function f(n) only in terms of f and f(n-l) f(n-2)
n 3

• "., f(O) or f in terms of f(n), f(n-l) ,... , and f(O) (which will
n

be useful in the construction of the inverse transformation) by intro-

ducing a suitable linear operator. To show how this can be done, let

us write Deprit's equation as

n-1

f(k) = f(k+l) _ cn-I f(k)n n-1 m Lm+l n-m-l; n > I, k _ 0 . (3.1)

m=O

By successive elimination of the functions on the right hand side of

the above equation one would eventually obtain f(k) in terms of f(k+n)
n

f(k+n-1) f(k). Thus one may assume the following form for f(k)

f(k) = f(k+n) _. CnG f(k+n-j)n - J J ; n _> 1, k _> O , (3.2)

j=l

where Oj is a linear operator and is a function of Lj, Lj_I,... , and

L I. Substitution of Eq. (3.2) into Eq. (3.1) yields the following re-

cursion relation for the linear operator G.
3

G. = L. - C
Lm+ 1 Gj_m_l, 1 < j < n (3.3)3 3

O<m<j-2

For example

G1 = L 1 (3.4a)

G2 = L 2 - LIL 1 (3.4b)

G3 = L 3 - LI(L 2 - L1L1) - 2L2L 1 (3.4c)
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Using Eq. (3.2) with f = y and Y, and taking k = 1, we obtain the fol-

(n) y(n)lowing general recursive relations for y and of Eqs. (2.12a)

and (2.12b)

Y (n) =Wny + _ Cn-lj G.j y(n-j) , n _> 1 , (3.5a)

l_j_n-i

= _ C n-I G. y(n-j) n > 1 . (3.5b)y(n) -Wny + J 3 ' --

l<j<n-i

Using Eq. (3.2) with f = q and Q of Eqs. (2.23a) and (2.23b), and

taking k = O, we obtain the following general formulae for x (n) and

x(n)

(n) (n) _ C n G y(n-j), n > 1 (3.6a)x =-y + J J _

l_<j<n-1

x(n) = _y(n) + _ C n G y(n-j) n > I (3.6b)
j J

l<j<n-i

Now, x(n)(x,X,t)

simply given by

and x(n)(x,X,t) of Eqs. (2.22a) and (2.22b) are

x(n) (x,X, t)= Ix(n)] y = x
Y X

x(n) (x,X,t) = Ix(n) ] y = x

Y= X

(3.7a)

(3.7b)

Next, consider an indefinitely differentiable function'v(x,X,t)

not explicitly dependent on 6. Using Eqs. (2.6), (2.7), and (3.2) with
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fo = v(x,X,t), fn = O for n _> I, and k = O, we obtain the following

general formula

e n (n)v(x,X,t) = T.' v

n=O

(y,Y,t) (3.8a)

where

v(n)(y,Y,t) = _ C nj G.j v(n-j)(y,Y,t) , n _> 1 (3.8b)

l_j_n

v(O)(y,Y,t) = v(y,Y,t) (3.8c)

Also the inverse relation can be written as

v(y,Y,t) = v(x,X,t) + _ v(n)(x,X,t) ,

n=l

(3.9a)

elimination of v(y,Y,t) - v(x,X,t) between Eqs. (3.8a) and (3.9a), and

using Eqs. (2.6), (2.7), (3.2) with k = O, and (3.8b) leads to

v(n)(x,X,t) =- [G n v(y,Y,t)] y = x
Y X

(3.9b)

Lastly, given the Hamiltonian

H(x,X,t;e) = _., Hn(X,X,t)

n=O

one can construct the transformed Hamiltonian K(y,Y,t;_)

K(y,Y,t; E) = _ Kn(Y,Y,t)

n=O

H(x,X,t;£) in the form

(3.10)

in the form

(3.11)

214



EXPANSION FORMULAEIN CANONICAL TRANSFORMATIONS

and this can be done as follows. Using Eq. (2.7),

_I(x,x,t;e) = T.' H(n)(Y'Y't)

n--O

Combination of Eq. (3.12) with Eq. (2.12c) and Eq. (3.11) yields

H can be written as

(3.12)

K0 = H0 (3.13a)

K : H (n) + R (n) , n > 1 . (3.13b)
n

Setting k = 1 and f = H + R in Eq. (3.2) leads to

H (1).+ R (1) = Kn+ 1 - _. C n Gjn n j Kn-j+l

j=l

, n>l .

But from the R and H triangles of Fig. 2, we have

a(1) a_+l
n =----SV- ' n_ °

(3.14)

(3.15)

(1) _ C nHn = Hn+l + m Lm+l Hn-m ' n _> O . (3.16)

m--O

Therefore, the simplified general recursive relation of the transformed

Hamiltonian is given by

K0 = H0 (3.17a)

)÷ / n-1  n-lo n n>l
n n _ j-I Lj Hn_ j + J n-j - _ ' --

l<j_<n- 1

(3.17b)
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where

DW _ W

----n-n= dt_ - LnHo n > IDt ' --
(3.18)

For example

K1 = H1 _ DWl/Dt (3.19a)

K2 = H2 + L1H1 + G1K1 - DW2/Dt (3.19b)

K3 = H3 + L1H2 + 2L2H1 + 2G1K 2 + G2K 1 - DW3/Dt (3.19c)

K 4 = H 4 + L1H 3 + 3L2H 2 + 3L3H 1 + 3G1K 3 + 3G2K 2 + G3K 1 - DW4/Dt

(3.19d)

the operators G1, G2, and G3 being as defined for Eqs. (3.4a) to (3.4c).

4. MODIFIED GENERAL EXPANSIONS

In the simplified formulae obtained in Section 3, the rate of in-

crease of the number of the Poisson brackets with respect to the order

of perturbation can be reduced if one uses intermediate functions like

f = G.f or G f(n) to be saved for later use in computation. Thus,
j,n 3 n j

this leads to the following recursive relationships:

a) For y(n), x(n), y(n), and X (n) of Eqs. (3.5) and (3.6)

= _ cn -1 (4.1a)y(n) Wny+ 3 Yj,n-j

l<j<n-I

(n) (n) 7. cn (4.1b)
x = -Y + _ j Yj,n-j

l_j_n-I
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y(n) =_Wny + _ C; -1 Yj,n-j

l<j<n-1

(4. ic )

x(n) _y(n) + 7 cn
= __ j Yj,n-J

l<j<n-I

(4.1d)

where

Yj,i = Lj y(i) _-'/_ Cm-li Lm+l Yj-m-l,i

_O_.m<j - 2

(4.2a)

y(i) Y cJ-I Lm+l Yj-m-l,iYj, i = Lj

_O_m_<j -2

(4.2b)

(b) For v (n) and V (n) of Eqs. (3.8b) and (3.9b)

(n) X cnv = . v
3 3 ,n-j

l_j_n

(4.3a)

Iv ] y = xv(n)(x'X't) =- n,O y X
(4.3b)

v. = L. v (i) CJm-Ij,i j Lm+l Vj-m-l,i ;

_O_m_j- 2

where

(c) For K of Eq. (3.17b)
n

K
n y ) DWn(C n-1 C n-1 Kj,n_ j - --_

= Hn + \ j-i LjHn-j + j

1_<j_<n-1

= L.K. - X cJ-I Lm+l Kj-m-l,iKj,i J I

_o__<d-2

(4.4)

, n >i

(4.5a)

(4.5b)
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Notice that for K i = O_ Kj, i = O for all j's, For example,

where

g 2 = H 2 + LIH 1 + K1,1 - DW2/Dt

K 3 = H 3 + LIH 2 + 2L2H 1 + 2K1, 2 + K2,1 - DW3/Dt

K 4 = H 4 + LIH 3 + 3L2H 2 + 3L3H 1 + 3K1, 3 + 3K2, 2 + K3,1 -

K1,1 = LIK 1

K1, 2 = LIK 2, K2,1 = L2K 1 - LIK1,1

K1, 3 = LIK 3, K2, 2 = L2K 2 - LIK1, 2 ,

K3,1 = L3K 1 - LIK2,1 - 2L2K1,1

(4.6a)

(4.6b)

DW4/Dt

(4.6c)

(4.7a)

(4.7b)

(4.7c)

The construction of the transformed Hamiltonian using the scheme pre-

sented by Eqs. (4.5a), (4.5b), and (3.18) is simpler and requires less

computer time and storage than the scheme presented by Deprit (1968).

A considerable amount of this reduction is due to the fact that the sums

H (n) + R (n) as well as H (1) + R (1) in Eqs. (3.13b) and (3.14) were
n n

considered as single quantities as if the transformed Hamiltonian was

constructed from a single triangle whose end products are H (n) + R (n)

and whose starting elements are H (1) + R (1) Further reduction in the
n n "

computer requirements can be achieved if some of the Ki's vanish, in

which case K also vanishes for all possible values of J.
j,i

Equations (3.17) or (4.5) and (3.18) are directly applicable to

nonlinear resonant problems in which HO is a function of only the
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action variables X, while Hn(n _ 1) depend trigonometrically on the

angle variables x and possibly the time t. It is desirable to trans-

form to new variables so that the resulting Hamiltonian contains, to-

gether with the new action variables Y, only certain slowly-varying

"long-period" combinations of the new angle variables y and the time

t. Equation (3.17) or (4.5) may be used to define the W's successively
n

so as to remove all "short-period' terms from the KntS ; such a W isn

unique up to an arbitrary additive long-period term.

The equations obtained are now being used in a fourth-order analysis

of the motion (stability and periodic orbits) of a particle in the neigh-

borhood of L 4 of the earth-moon system in the presence of the sun. In

this problem, the following parameters are treated as first order small

quantities: distance from L4/earth-moon distance, eccentricity of

the moon's orbit around the earth, moon mass/earth mass, mean motion of

the sun/mean motion of the moon. The additional parameter (earth-moon

distance/earth-sun distance) is treated as a second order small quantity.
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ABSTRACT: The power series solution of the equations of motion of

a system of n polnt-masses is presented. This solution is a formal

one in the time domain. The origin of the series expansions is a

non-colllslon point. A procedure has been developed using three

fundamental recursion formulas, one of which involves a special

differential operator. Some of these analytlcal formulations have

been programmed in the PL/I FORMAC language. Results are presented.

Both authors are located at the IBM Cambridge Advanced Space Systems

Department, FSD, Cambridge, Massachusetts.
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2,

THE FORMAL SOLUTION OFTHE n-BODY PROBLEM

Recent applications of the methods of celestial mechanics to prob-

lens of space flights impose severe requirements upon the quality

of the solution. Quality stands here for high level of accuracy

in the computed position of a space probe when its motion takes

place under the perturbations exerted by many bodies. Means to

satisfy those requirements are offered by well-known numerical in-

tegration techniques which can be applied to the equations of motion.

Although efficient from a computational point of view, these tech-

niques are regarded in general as being a rather crude approach to

the solution of the problem. Besides, it might be desirable, from a

theoretical point of view, that the solution be obtained in an analytical

form, for instance that it be constructed as a tlme-power series. In

this paper we show how this analytical goal can be achieved. We will

give a recursive method to construct the terms of these series up to any

desired high-order power of the independent variable (t). The formal

solution thus obtained could be used to cover an arc of the trajectory

much longer than the step used in any numerical integration procedure.

This solution is valid, of course, in a neighborhood of t = O, origin

of the series expansion, which is assumed not to be a collision point.

The crucial problem to be solved is to construct the series expansion

of the inverse cube of the distance between bodies. This is achieved

introducing some auxiliary functions and operating on them with an "ad-

hot" differential operator. The end result provides the coefficients

of the series as functions of the initial conditions which must be sat-

isfied by the equations of motion.

We consider the motion of n bodies in a Newtonian potential field.

Let mi(i = 1,2,3,...n) be the masses of these bodies, to be considered

as point-masses, and xi, Yi' zi their Cartesian coordinates referred to

an inertial reference frame. For the sake of generality, we suppose

that none of the masses is negligible and that none of the bodies is

constrained to move along a prescribed trajectory.
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The equations of motion can be written as follows

(i)

where

n

D(2)x i - k Z m. _ljaij (J _ i)

-3

ij

(3) r 2 a2ij b2 c 2ij = + iJ + iJ

(4) aij - xj - x i, bij - yj - Yi' eij = zj -- zl,

d
and slmilarly for Yi and z i. The symbol D stands for _, and k is

the gravitational constant. If the fundamental units of length,

mass and time are appropriately chosen, then we can take k - I.

The set of equations (1) constitutes a system of 3n differential equa-

tions of the second order.

Let now

(5) Xio = xi(O), Xil = (Dxl) 0

be the initial conditions. The formal solutlon of (1) as a Taylor

series in t is

(6) xi = !=oXi t_

where

xiu "_(D(V)Xi)o

The first two coefficients in (6) are given by (5).

cient xi2

The third coeffi-

is given by the right-hand side of equation (i), evaluated
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at t - 0 and multiplied by one-half. Then, the successive coeffi-

cients can be constructed by an iterative procedure. In fact,

setting

we get from (i) by a well-knownprocedure

n

1 a

(8) xi,_2 " (.,_2)7,..-,-1)_.lmJl.o"iJpjp iJ.-p, (._ 0>.

This equation can be used recurslvely after we have learned how to

compute "lJl' _lJ2"''' _iJv in terms of the initial conditions (5).

1

We put emphasis on the fact that there are _n(n-l) functions _iJ which

should be handled simultaneously due to the coupling of the subscripts

i,J. This implies that the algebraic manipulations to be performed

will be very lengthy, even for relatively small values of n. We will,

however, omit from now on the subscripts i,J. The notation used by

Sconzo [i] in his investigation on the tridimensional non-restricted

three-body problem will also be used here.

3. We introduce the first of our auxiliary functions by the definition

(9) s = aDa + bDb + cDc

For compactness we rewrite s as follows

(zo) s = S[_a]

where the symbol S[...] has the meaning of a sum extended over terms

in b and c similar to that in a.

Then, successively differentiating the function _ it is not difficult

to recognize that

L(_) -_(oP_ +(ll) _ =-_ . = q_)

where P is an expression in o,e and the derivatives of s of order
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higher than the second, and Qv a polynomial in _,_ where p, _, and c

are new auxiliary functions defined as follows

-2
(12) p - r , o - ps, ¢ - pDs

In order to prove (11) one has to observe that the first derivatives

of all the auxiliary functions so far introduced can be expressed in

terms of the functions themselves. In fact_ it is

(13) D_ - -3_o, Dp - -2pop Do - ¢ - 2a2

(14) Dc - -2oc + pD(2)s

In our recurslve procedure the equations (8) and (11) are pivotal for-

mulas, together with the formula obtained by applying Leibnitz rule to

the rlght-hand side of equation (10). Distinguishing the cases where

the order of differentiation is odd or even, the latter formula is,

respectively,

v+l

(15a) V(2_+Z)e ^.i.2v+2, {D(v+l)a}2 _ 2x_2 ._(V+lq_) (v+l-p) a
= _L_'L v+l; + p.1 (_+Z+p)l), aD ]

-_+i

(15b) D(2_)s - SF_ (2v+l)D (v+P) aD (_+I-P) a ]

p-i v+p

We notice in passing that the functions p_ p_ s, _ and c can be ex-

pllcitly expressed in terms of the initial conditions (5). The deriva-

tives of s of order greater than the second become instead implicitly

defined in terms of the same inltlal conditions by virtue of (15a) end

(15b).

*We notice the analogy with the two body problem formulatlon [2]. In this

particular case there is only one function p and the auxiliary function s

satisfies the differential equation

D(2)s - - _s

Thus, equation (14) reduces to

D¢ - - 0(2¢ + U)

and the whole procedure is greatly simplified.
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4. The method we have described can be considered completed if we

succeed in giving explicit expressions for Pv and Q_ for any

desired value of v.

To this end we consider the following operator

(16) 0 = D - 5o

Then, a simple algebraic manipulation provides

(17) P_l = ePv + A

qv+l = -3°Qv + By

where

(18) A -_qv . D(2)s

6e

Thus, starting from

1
P0 = O, q0 =-_

any expression can be generated, by hand for lower indexed, by a

computer for higher indexed functions P and Q. A program wrltten

in the PL/I FORMAC language has generated these functions, conse-

quently the derivatives of _, up to orders far exceeding any practical

need. We list in the table appended below the first six of these

functions. For v • 6, the expressions become very lengthy, and this

is the only reason which prevents their presentation in this paper.

The problem of finding the formal solution (6) of the equations of

type (I) can thus be considered solved.
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1
TASLSOFTHE_r_czzo_s_ AND_--Q,_

PI-0

2_2 =0

= 1 D(2)s_,3

1 D(3)s4_4 "2-4 -50 D(2)s

5_-P5 1 D(4)s - 5 D(3)s"i3-5 _o

5 (e_7o2) D(2)s
12

_Tp6 1 D(5)s 1 D(4)s 5 D(3)s= _ - _-_ o - _-_ (c-7o "2)

35 D(2)s _ 5 (D(2)s)2+_'_ o (c-3o 2) _ p

Q1 ==o

2_12 =1 _" (_-5o "2)

_3- _° ,_3¢+,o2_

_,.__2÷_ o5_2__3o2_

_15 "7 a (5c 2 - 3002¢ + 3304 )

35 3 7 2
6 =-_ -_-_o (45c 2 165o2E

+ 143_ 4)
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THE LONG PERIOD BEHAVIOR OF A CLOSE LUNAR ORBITER

INCLUDING THE INDIRECT SOLAR GRAVITY PERTURBATION

by

Robert Dasenbrock*

ABSTRACT

The long period behavior of a lunar orbiter is considered.

Of special interest are the effects due to the inclination of the

apparent Earth's orbit about the Moon and those effects described by

the laws of Cassini on the equations of motion. The first part of

the paper is restricted to low orbits where the lunar gravity field

dominates the terrestrial perturbation and to higher orbits of low

inclinations where the argument of pericenter circulates through an

angle of 360 degrees. The last part of the paper deals with near

polar orbits where the indirect solar perturbation as described by

the laws of Cassini is most important. Long-term stable positions

for the orbit plane are found.

Doctoral Candidate and Research Assistant, Department of

Aeronautics and Astronautics, Stanford University, Stanford,

California (January 1969)
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NOMENCLATURE

a

e

e E

F

Fo,F1,F2,F 3

g

G

h

H

_r

i

I E

J20,J22,J3,J4

L

£

P

_r

%

rp

_r

semi-major axis

eccentricity

eccentricity of apparent Earth's orbit about

the Moon

the negative of the Hamiltonian

components of F

argument of perigee

_a_-e2), canonically conjugate to g

angular momentum vector of satellite

position of the ascending node

_-_2)cos i, canonically conjugate to h

Hamiltonian

component of the Hamiltonian

inclination

inclination of the Earth's orbit to the

lunar equator = 6 degrees 44 min

lunar gravity coefficients

mean anomaly

C_, canonically conjugate to

Lagrangian

a(l-e 2)

momentum canonically conjugate to coordinate,

rIJ in inertial space

momentum canonically conjugate to coordinate,

_r, in the rotating frame of reference

coordinate in inertial space

perigee heigth = a(l-e)

coordinate in the rotating frame of reference

lunar radius
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S

So,SI,S 2

v(r)

OE

e

al

generating function

components of S

arbitrary potential function

Earth coordinate

momentum canonically conjugate to B E

gravitational constant of the Moon

argument of pericenter = g

position of the ascending node = h
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I. INTRODUCTION

Some attention in recent years has been focused on the

problem of determining the motion of a lunar satellite. The

problem is complicated by the peculiar nature of the Moon's gravity

field. Early attempts by several authors 1'2'3 on the solution of

this problem were made by assuming the Moon to be in nearly hydro-

static equilibrium. Thus only the J20 and J22 gravity coefficients

were carried in the equations of motion. The higher harmonics J3'

J4' etc., were either ignored or assumed to be of order d0"

Independent determinations of the gravity coefficients by both the
4

U.S. and the U.S.S.R. 5 invalidate this assumption. It appears

from the early data that the oblateness coefficient, J20' has a

value of approximately -2.0x10 -4. However preliminary data from

Lunar Orbiters I through V still gives no conclusive evidence on

the absolute values for the higher gravity coefficients. It

appears at this time that these are all at most of order 10 -5 .

The lunar orbiter problem is further complicated by the

large perturbation caused by the Earth. For an orbiter of moderate

height, say 800 to 2000 kln above the surface, the terrestrial per-

turbation is roughly equal to the oblateness effect of the Moon's

gravity field.

Of primary interest will be the long period effects, i.e.,

those fluctuations in the orbital elements having periods of

several months or longer. Short period variations, all of which

have much smaller amplitudes, will be averaged out. For a discussion

of these latter effects the reader is referred to papers by

Giacsglia 2 and Osterwinter 3. The lunar gravity coefficients, J20'

J22,J3,J4 will be retained in the equations of motion. Cassini's

laws on the figure of the Moon will be considered in their classical

form, i.e., the smaller effects of the physical librations will

be ignored.
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The relative effect of the eccentricity of the terrestrial path

on the short period variations is of order e E (=0.055). However

its effect on the long period behavior is of order eE2 (=0.0552 )

and thus will be neglected. Such is also the case with terms in-

volving eEsln I E. The small effects of the Solar radiation pres-

sure along with the direct solar gravity effect will not be

considered.

II. CHOICE OF REFERENCE FRAME

As the behavior of close lunar orbiters is of primary

interest, a reference frame coincident with the lunar equator is

most convenient. This is especially So if the higher harmonics

of the Moon's gravity field are considered. However, as a con-

sequence of Cassini's laws, the plane of the lunar equator is not

fixed in space. Caasini's laws state that the plane of the lunar

equator, the ecliptic, and the plane of the Moon's orbit all

coincide in a common line (ignoring physical libratlons). This

line is the node of the lunar orbit as referenced to the ecliptic.

It is convenient to choose this line (the ascending node) as the

x-axis of the reference frame. The lunar axis of rotation is the

z-axis. Thus full advantage is taken of the geometry of the

system. This is described in Fig. (i). The system rotates in

retrograde manner with a period of about 18.5 years.

If one is to work in the rotating system just described,

the equations of motion, derived for a satellite moving in an

inertial frame, must be modified. It is suggested that this

modification take the form of an an additional perturbing term in

the Hamiltonian. The system of reference is rotating with

angular velocity components

0.0 rad/sec
x

3.0x10 -I0 rad/sec
Y

_z = -I'07xi0-8 rad/sec

(1)
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In an inertial frame of reference the Lagrangian is

= _i2/2 - V(r I) (2)

In the rotating frame

t = (_ + _×Zr)2/2 - V(r r) (3)

_r = _-_r_= _r + _xr% (4)

The Hamiltonian is

}( = Pr'rr - _ (5)

Expressing 3( in terms of (_r,_r) one obtains

}( = _ pr. Pr + V(r ) - _.hr (6)

where h is the angular momentum of the satellite whose components

are

h : G sin i sin h
x

h = -G sin i cos h
Y

h z = G cos i = H

where G,H,h are the usual Delaunay variables.

term to be added to the Hamiltonian is

_r = -_.h = -_ h - _ h
yy zz

Wr = +_ G sin i cos h - _ H
y z

The additional

(7)

(8)
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III. THE DISTURBING FUNCTION

The computation of the disturbing function due to the

perturbing effects of the Earth and Moon is straightfoward but

lengthy and thus will not be reproduced here. Employing a

7
result due to Brouwer and Kozai , the Hamiltonian in mixed

Keplerian and Delaunay variables is

2

F = _ - n E _ - _yG sin i cos h + _z H

+ _ _G 3 + cos 2(h-0 E)

}3 ____Rm IJ e sin i (1-5cos2i)sin g

8 L3G5 [ 3

_ 3______Rm j 3-30cos2i +35cos4i)(2+3e 2)

128 L3G 7 )}
-10 e2cos 2g(1-8cos2i +7cos4i

n 2a2 2 2 2
+ _ r(2+3e )_3COS i-1 +3sin i cos 2(h-0E) }

1o J fit
"+ lSe2_(l+cos i)2cos 2(g+h-e E) + si.2i cos 2g

+ _(1-cos i)2cos 2(g-h+O E)

sin I E /(6+9e2)sin 2i cos h -cos(h-20 E)+

-30e2sin i cos i cos h cos 2g

-sin h sin 2g +sin(h-2g)sin 2g

-cos i cos(h-2_E)COS 2g 1

+ sinlIE {(6£9e2)(slnli -sinlh -coslh cosli)

(sin2h +cos2h cos2i +sin2i)cos 20 E
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+30e2{cos i sin h cos h cos 2@E- cos i sin h cos h }sin 2g

-15e2{sin2h + sin2i - cos2h cos2i

+(cos2h eos2i - sin2h - sln21)cos 2bE}COS 2g _IJJ
(9)

The short period terms containing _, the mean anomaly, have been

averaged out. 8 is canonically conjugate to BE, the Earth coordinate,

and F is the negative of the Hamiltonian. This convention will be

used throughout.

It is desireable to write the Hamiltonian in the form

F = F 0 + F 1 + F 2 + ...

where F 0 is of order unity. F 1 is of order 10 -2, F 2 is of order 10 -4

and so on. To determine the order of each term in Eq.(9), Fig.(2)

is found useful. The terms _2/2L2 and n_ are seen to belong to F 0

and F 1 respectively. Terms assigned to F 2 are _z H and the contri-

bution associated with J20 and J22" The Earth perturbation and

those effects due to J3 and J4 belong to F 3. The disturbing function

is thus of the form

F(L,G,H_,g,h,b E) = Fo(L) + FI_) + F2(L,G,H,g,h,b E)

+ F3(L,G,H,g,h,b E) + ...

At this point one wishes to eliminate all terms in F

containing b E. This is accomplished by means of a stationary

generating function

S(L',G',H'_',g,h,b E) = L'_ + G'g + H'h + 8'b E (i0)

+SI(L',G',H',g,h,b E) + S2(L',G',H',g,h,b E) + ...

such that the new Hamiltonian F_(L',G',H',O',g',h') does not contain

b E. The new coordinates are related to the old by the relations
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8s L' _, 8S 8S _S2
L=_-_= =_,=_+_, +_,+...

with similar relations for the other variables. From the

relation

F*(L',G',H',8',g',h',S_) = F(L,G,H,S,_,g,h,8 E)

the following equations are derived for S 1 and S_.

* , _Sl

F2(L ,G',H',E,h,-) = F 2(L',G',H',g,h,8 E) - nErVE

, _F2_ _F_ .._._Sl _ _F3 + _ _G' + _ _SH' = F3 + _SG'_'_'g+ E_It'_h - "

_SI _ to cancel the periodic parts of Eqs. (12)
choosing _E and _8 E

and (13) respectively, the new Hsmiltonlan is

F* _2
nE_' + F_(L',G',H' g',h') _F2 _i= - ' + _G' _g

_-,_+ • ,+ _h F3(L ,G' ,H' ,g',h')

As F* does not contain 8_, 8' is constant and will be dropped

in the following discussion.

In order to use the yon Zeipel method to dete_ine

the long period behavior of the orbital el_ents, F must be of

the fo_

2

F* _L---_+ *t *'= F2(L ,G',H') + F3(L ,G',H',g',h')

where F 3 is dominated by F 2. This can be done if the orbits

under consideration are restricted. The )ower orbits, where

J20 is the dominant perturbation, automatically fall into

this cat_gory. Also included are the higher orbits provided

the inclination remains low.

(ii)

(12)

(13)

(14)

(15)
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F_ in Eq. (15) is in mixed variables

nE2a,2

F_ - _i L'3G'3_4_- j20(l_3cos2i ) _ _ (2+3e2)(l_3cos2i)

+ _zH, 3 _6Rm4 J4 [3-30c°s2i+35c°s4i](2+3e2)

128 L,3G,7

n_6a'2sin2IE [(2+3e2)_(3cos2i-l)] (16)

The coupling terms in Eq. (14) have been dropped because of their

relatively small size. All of the terms independent of g and

h in F_ are included in F_. F; is

3_5Rm3 J3e'sin i (l-Scos2i)sin g'
F 3 = -_ L,3G,5

30 _6Rm4

128 L,3G,7 J4[l-Sc°sBi+7c°s4i]e2c°s 2g'

15 nE2a,2e,2sin2i,co s+_ 2g'- _yG'sin.i' cos h'

nE2a'2[ {+--i_-- sin 1E (6+ge'2)sin 2i'cos h'

-30e'2sin i' [cos i' cos h' cos 2g'-

sin h' sin 2g']}

[ 9 ,2. 2 ,

sin21E _(3_e )sin i cos 2h'

-15e'2cos i' sin 2h' sin 2g'

+ _'2(l+cos2i')cos 2h' cos 2g'

45 ,2 . 2 , __ _]

- _-e sln i eu_ 2g'f] (17)

242



CLOSELUNAR ORBITER LONG PERIOD BEHAVIOR

It should be pointed out that for the lower orbits the

various angles appearing in Eq. (17) i.e., g', h'_ h'_g', h'_2g',

are all driven by the dominant F 2 term. One must beware however

of the various instances where any of the angular rates become

small. This occurs near the eleven (slightly altitude dependent)

critical inclinations 6 at i' = 46.6, 56.1, 63.4, 69.0, 73.2, 90.0,

106.8, lll.O, 116.6, 123.9, and 133.6 degrees. When the inclina-

tion is near one of these critical values, the resulting behavior

of the coordinates can exhibit very long period variations and

the von Zeipel method, now to be followed, fails. A method

valid in these special situations will be outlined in a later

section. For a high orbiter having a moderate inclination

(above 40 deg.) F 2 in Eq. (16) will contain some g' and h:

dependent terms that are now included in F 3. In this case the

yon Zeipel procedure fails. This situation is discussed by

Kozai I and Vagners 9.

IV. THE LONG PERIOD TERMS

As before one looks for a transformation from variables

(L' ,G' ,H' ,g' ,h') to new variables (L" ,G",H",g" ,h") such that the

new Hamiltonian F $$ is a function of (L",G",}_') only. Consider

the stationary generating function

__._, A,, H" " h "_
S = L"f' + G"g' + H"h' + _i tl. ,_ , _g , } + ...

The relation between the coordinates are

G' = G" + _ + g,, = g, + _S_
_g' "'" _G" ÷ "'"

with similar relations between the other variables.

(18)

(19)
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Choose S 1 to be of the form

* = _isin 2g' + _COS g' + _3sin h' + _4sin 2h'S 1

+ _5sin(h'+2g') + _6sln(h'-2g ' )

+ _6sin(2h'+2g') + _Tsin(Bh'-2g')

where

[i--_ 6 4 [l-8cos i +7cos i _e
-30 _ J4 ( 2 ,, 4 ,,] .2

_I = L" 3G" 7

15 2 .2 .2 2 ,,. S _F

_n E a e sin i (1 - _sin I E

3 _ J3 e"sin i"(l-5cos2i ''
G 2 = _ L,,3G,,5

(21)

_3 = _zG"sin i" - nE2a"2sin16 IE(6+9e"2)sin 2i'

.... 5. %F:

15 9..2 .2 . [,, +
_5 = _-_ n h a e sln i E sin (1+cos i"

C_6 _ n E a e sin I E sin i"(l-cos i" _, -

15 2 .2 .2 2 i"
S 7 = _ n E a e sin IE(14cos ) + 9.

15 2 .2 .2 2 - _F

G8 = _ n E a e sin IE(1-cos i") - 2
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The Hamlltonian F** is now independent of g" and h" and is

2 1 _4Rm2 J2o(l-3cos2i ") + _ H"F**(L",G",ff') = _ +----

2L, 2 4 L,,3G, 3 z

3 _6Rm4 [3 -30cos2i" +35cos4i ' ']128 L.3G.7 J4 (2+3e''2)

2 .2 3 2

+ _ (2+3e "2) (3cos2i"-l) (1- _sin I E) (22)

As S 1 and S 1 are known, Eqs. (ll) and (19) are utilized

to determine the behavior of the elememts (L,G,H,_,g,h). The

coefficients of the trigonometric terms in Eq. (21) contain six

critical divisors. These correspond to the eleven (slightly

altitude dependent) critical inclinations mentioned previously.

It appears from an inspection of Eq. (21) that near a critical i"

the amplitude of the coordinate variations can become nearly

infinite. Actually this is not the case as will be shown in the

following example.

Suppose the inclination is near 90 degrees. A near polar

orbit is chosen as the very long period behavior resulting from the

laws of Cassinl is best demonstrated. The slowly varying Hamiltonian

is (i.e., the relatively fast variable, g', has been averaged out)

2

F** = _

2L ,,2
1 _4Rm2 J20(l-3cos2i") + _ _' - _ysin i"cos h"

+ 4 u, SG,3 z

nE2a"2 [(
+ _ (2+3e ''2) 3cos2i"-l) + 3sin IEsin 2i"cos h"

+ _ sin2IE sin2i"cos 2h' (23)
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where all of the elements are slowly varying. The secular terms

and sin2I E have been omitted in Eq. (23) due to theirinvolving J4
small size. Since the Hamiltonian does not depend on _' or _', _'

and _' are constant and the equations of motion have been reduced

to that of one degree of freedom. They are expressed as

![_E_2 g,, _=- = - o -

,,di" _, _F**
-G"sin i _ = = + _, =

- 316 nE 2a''2(2+3e''2) Isin

(24)

_yG"sin i"sin h"

2 2 ,, ]IESin 2i"sin h" + sin IEsin i sin 2h"

]

(25)

Note that _z = - i'07xi0-8 and J20 = - 2"0xi0-4" The phase plane

(_',_') contours of constant F_$ in Eq. (23) are shown in Fig. (3). For

very low orbits (Fig. 3a) the stable equilibrium points occur at

_' 0 degrees and i" -i/_'%
= = cos _,j = 88 degrees. Recall that the

nodal position, _', is measured from the point where the plane of

the lunar equator, the ecliptic, and the terrestrial path meet in

a common line. It appears that the orbital plane of a low orbiter

can become trapped in this same configuration. Or it can exhibit

very slow stable oscillations about this position, the period of

which is about twenty years for a low satellite.

The interplay between the inclination and nodal position

demonstrates remarkably different behavior for higher orbiters.

For a semi-maJor axis of 1.5 Rm and an eccentricity of 0.0, the

behavior of (_',h") or equivalently (i",_') is shown in Fig. (3b).

In this case the inclination can be trapped near 83 degrees but

_' appears to be stable between 0 and 90 degrees. The behavior

for a still higher orbiter is shown in Fig. (3c).
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For this case the stable equilibrium solutions occur at _' slightly

over 90 degrees (and slightly less than 270 degrees) and i" = 74

degrees. This is near the 73.4 degree critical inclination (when

h"- g" = 0) mentioned previously. However in this particular case

a closer examinination shows that this critical i" occurs at about

66 degrees. This particular orbit may eventually impact the sur-

face. (cf. Kozai)

V. CONCLUSIONS

The long period behavior of a lunar orbiter is

determined for a certain class of orbits. The method of succes-

sive approximations is employed in treating the circulating

orbits. In this case the angles _', h", _'+_', etc., were

assumed to move at nearly uniform rates. The librating orbits

(when one of the angles does not move through an angle of 360

degrees) are treated by the use of a phase plane analysis.

Treated, as an example of the latter, are near polar orbits in

which the indirect effect of the Sun (described by the laws of

Cassini) is important. Stable altitude dependent positions of

the orbital plane are found.
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LECTURESONNONLINEARRESONANCE
W.T. KYNER

In theearly1940's,interestin thetheoryof nonlinear
differentialequationsdevelopedrapidlyin theUnitedStates.
Friedrichs,Hurewitz,Levinson,Stokerat Brown,Lefschetz,Bellman
at Princeton,andMinorskyat theDavidTaylorModelBasinwereamong
thosemostresponsible.In particular,Lefschetzrecognizedthe
importanceof theSovietcontributionsduringtheprecedingdecade
andhelpedmakemuchof this workaccessibleto theAmericantechnical
public. In 1942,hepreparedatranslationof excerptsfrommono-
graphsof KrylovandBogoljubov[5 ] whoseaveragingtechniquesare
closelyrelatedto thegeneralperturbationtheoriesof celestial
mechanics.It is interestingto note,however,thatjustwhenKrylov
andBogoljubovwerestartingtheir researchin nonlinearmechanics,
anelderlyAmerican,E.W.Brown,Gibbsprofessorof mathematicsat
YaleUniversity,explainedandessentiallyjustifiedtheimportant
conceptof resonanceasabasicallynonlinearphenomenon.Hislectures,
"Elementsof theTheoryof ResonanceIllustratedbytheMotionof a
Pendulum,"weregivenat theRiceInstitutein April 1931andwere
laterpublishedasaRiceInstitutepamphlet[Z]. Theyareparticu-
larly relevantto thisyear'sYaleSummerInstitutebecauseof the
importanceof resonancephenomenain geodeticsatellitetheory.

In mylecturesonresonanceI shallfollowBrown'sexposition
of thebasicconcepts,butI shallusetheKrylov-Bogoljubovmethodof
averagingin themathematicalanalysis.Themainapplicationof this
theorywill beto satelliteproblems.

255



LECTURES ON NONLINEAR RESONANCE

I. Pendulum problems

As we all know, a stretched wire has certain modes of vibration

which seem independent of the strength of the energy source. But we

tend to forget that the "natural frequencies" of these modes are a

mathematical fiction since they are only present "when the vibrations

have infinitely small amplitudes, which amounts to saying that the wire

is not vibrating at all. More properly, a natural frequency should be

defined as the lower limit of the frequency of that particular mode of

vibration. It is necessary to insist on this change of frequency with

change of amplitude because the existence of the phenomena of resonance

depends on the existence of this change" (p. 2 of [5]). Furthermore,

a detailed analysis of the "locking in" effect which is observed when

two piano wires are tuned to the same frequency depends in an essential

way on the change of frequency with amplitude. This is discussed in

detail by Brown and more concisely by Cesari (p. 151 of [3 ]). I shall

omit such a discussion here and go directly to the pendulum problems

which are physically less interesting, but more relevant to satellite

theory.

We first consider an ideal pendulum of length b with an

oscillating support (see figure l).

Let Y be the horizontal distance of the support point S

from a fixed point 0 and x the angle which the pendulum makes with

the vertical. The support point S is constrained to move in the

horizontal direction. The equation of motion of the pendulum is

(l.l) --d2ycos x + b --d2x : - g sin x,

dt2 dt2
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(we sum the forces along the line perpendicular to the pendulum).

We now assume that S oscillates with a motion given by

Y(t) where

Then

d2y
= - e g f(_t), c small, f(z + 27) = f(z), all z.

dt 2

(1.2) --d2x+ w 2 sin x = E f(_) cos x, _2 : g/b, _ = st.

dt 2

The second model problem is that of two pendulums, each of

mass m, but with different lengths, attached to a bar of mass M

which is constrained to move in the horizontal direction (see figure 2).

We assume that the total horizontal momentum is zero, i.e.,

(1.3) _--_-[MY + m(Y + b sin x) + m(Y + a sin y)] = O.

The equations of motion are

(I.4)

d2y cos x + b d2x - g sin x,

dt 2 dt2

d2Y cos y + a d2y g sin y.

dt 2 dt2

Using (I.3) to eliminate d2Y/dt 2, we obtain
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d 2 a
d2x + m2 sin x = E cos x-- (sin x + _ sin y),
dt 2 dt 2

d 2 b
d2Y+ _2 sin y : _ cos y _ (sin y + _ sin x),
dt 2 dt 2

where m2 = g/b, _2 = g/a, c = m(M + 2m) -1. We assume that c

small. Equations (1.5) are awkward to work with since the second

derivatives of x and y appear in both equations. We therefore

rewrite the equations as

d 2X + _2 sin x e cos x [I - _ (cos2x + cos2y)] "I

dt 2

(1.6)

is

fdx_ 2
{_2 (cos x sin x + cos y sin y) + sin x ,_,

a _t)2+ _ sin y ( } ,

d___+ _2 sin y : - _ cos y [l - c (cos2x + cos2y)] -I
dt 2

b ,dx_ 2
{_2 (cos x sin x + cos y sin y) +_sin x _j

+ sin y (_t)2} .

Each equation of (1.6) can be interpreted as a perturbed

pendulum equation. We therefore can use the same mathematical pro-

cedures on equations (I.2) and (I.6). The first, and rather difficult,

step is to introduce new coordinates so that the differential equations
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will be in the normal form for the method of averaging. In order to

motivate the coordinate change and to display the simplest features of

resonance, we shall now study the linear differential equation obtained

from (1.2) by making the small angle approximation, i.e., sin x _ x,

cos x _ I. We have

(1.7) _d2x + w 2 x = e f(@), @ : st.

dt2

The solution to (I.7) can be written

t
E

(1.8) x(t) = r° cos O(t) + _ f sin _(t - u) f(_u) du,
0

where O(t) = m t + 0o, ro and 8° are constants determined by

initial conditions.

If m, the frequency of the forcing function, is an integral

multiple of m, the frequency of the linearized pendulum equation,

then unbounded solutions of (I.7) are possible. In other words, if

(1.9) _k : _, k an integer,

then the condition of linear resonance has been satisfied. It is

obviously the same for all forcing functions of period 2_/m, but

the existence of unbounded solutions depends on the presence of

sin mt or cos mt in the Fourier series expansion of a particular

forcing function. The concept of linear resonance is of limited

physical significance since the small angle approximation is destroyed.

Before leaving the linear approximation, let us consider the
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homogeneous (c = O) problem with the aid of the corresponding phase

and potential planes (see figure 3). In the phase plane we plot the

level curves of the energy integral,

E(x,_) : ½ 12 + ½m2 x2 = h, a constant,

and in the potential plane, the two curves

c : h, c : ½m2 x 2.

Each level curve is characterized by its energy and therefore by its

amplitude. We now introduce r, the amplitude (note that h = m2r2/2),

and 8, a normalized angle, as dependent variables, i.e., we set

(1.10) x = r cos e, _ = - _ r sin e, e = _ t + eo.

The inhomogeneous equation (1.7) is equivalent to

dr _ f(_) sin e,d-_ :

de c f(@) cos e,(1.11) -d_ : m + _-_

d_ =

dt _"

Equations (l.ll) are in the normal form for the method of averaging.

Note that if c is nonzero, they are nonlinear.

In order to reduce the nonlinear pendulum equation (1.2) to

nomal form, we seek a coordinate transformation (compare with (I.I0))

261



LECTURES ON NONLINEAR RESONANCE

\c//
x

\

_x

FIG. 3

262



LECTURES ON NONLINEAR RESONANCE

(1.12) x = F(r,O), _ = G(r,O),

with F and G having period 2_

(E : O) equations have the form

in 0, such that the unperturbed

dO z(r)(1.13) d-T: '

It will be shown later that z(r) = m2(l - r2/16 + ...).

The construction of the transformation (l.12) is somewhat

complicated, but it can be motivated with the aid of the phase and

potential planes. We again plot (see figure 4) the level curves of the

energy integral,

E(x,_) : ½ _2 + w2(l _ cos x) : h, a constant,

in the phase plane, and the curves

c = h, c : m2(l - cos X),

in the potential plane.

We see that h less than 2m 2 implies that the motion is

periodic and that the level curves are characterized by the amplitude.

The transformation (l.12) is therefore possible. Since we need to

study several nonlinear differential equations in the satellite problems,
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we shall give a general construction which will then be applied to

the pendulum problems. It is similar to the one used by Brown and

more recently by Morgunov [ 7 ].

Consider

(l.14) --d2x+ q(x) = O, q(-x) = -q(x), q'(O) > O.

dt2

If r is positive and not too large, then

X

(l.15) ½_2 + Q(x) : Q(r), where Q(x) : f q(x') dx',
0

is the equation of a closed integral curve in the phase plane.

generated by a periodic solution of (l.14).

From

(I.16) ;_ , r 'r) - 1/2_2LQ_ Q(x)]) : _ ....= _r_) ,

we have

X
-I i

(l.17) 0 = z(r) f A (r,x) dx' = B(r,x),

It is

where the frequency z(r) is given by

r

(1.18) 2_ z-1(r) : 4 f A'1(r,x ') dx' .
0

Equations (1.16-1.18) implicitly define the required transformation

(l.12). Clearly,
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de z(r), dr(l.19) dt- : d-t = O.

The perturbed equation,

(1.20) --d2x+ q(x) = _ f(_t),

dt2

will be transfomed into a system of first order equations,

de = z(r) + E e(r,e,_)

dr

(1.21) _-_ : E R(r,O,_b),

d_ =

dt _"

To do this we write

(I.22)

d_ BA dr BA dx

d-_ = _-rd-t+ _x dt '

dO _B dr BB dx
d_ = _-rd-{-+ _x dt "

But

dx = A(r,x)
dt

d2x

dt 2
= - q(x) + e f(_t),

and
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_A
: q(r) A-1(r,x),

_A
B--_:-q(x) A-1(r,x),

Hence,

BB _ z(r) A'1(r,x)
Bx

dO BB
= z(r) + _ f(¢) A(r,x) z-1(r) _-(rr,x),dt

dr

(1.23) _ = c f(_) A(r,x) q-*(r),

where 0 = B(r,x) determines x as a function of (9 and r.

Equation (I.23) can be simplified if we have an explicit

formula for x = F(r,O), the inverse to 0 = B(r,x). For from

= A(r,x) = z(r) BF
T6(r,e),

A(r,x) = - A(r,x) _(r,x) = - z(r) _r ,8),_r r,x) _B BF,r .

we obtain

dr
q-1(r)

BF
f(_) z(r) _r,O),d-_- : c

(I.24) d-tdB: z(r) [l - c f(_) q-1(r) -_r r,B)]

d_
dt : _"
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Note that F(r,O) and z(r) can frequently be represented by an

infinite series, e.g., by using Lindstedt's method (p. ll6 of Cesari

[3]).

We have finally transformed our differential equations into

the normal form for the method of averaging, our next topic.

2. The method of averaging.

For convenience, new notation is employed in this section.

We consider a system of ordinary differential equations,

(2.1)

dx _ X(x,y), x (x1,. ,XM),dt e = ..

dd-_t = z(x) + e Y(x,y), y = (Yl ..... YN )'

with initial conditions x(O) = a, y(O) = b. The vector valued

functions, X(x,y), Y(x,y), are assumed to be smooth and to have

period 2_ in each Yn" The x m are called slow variables, the

fast variables, since if e = O,

xm = am, 1 < m < M,

(2.2)

Yn

Yn = Zn(a) t + bn, 1 < n < N.
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Our goal is to construct a transformation,

(2.3)

x = u + E P(u,v),

y = v + c Q(u,v),

with P and Q having period 2_ in each vn, so that the equations

(2.1) become

du U(u) + ¢2d-t- = _ W (u,v,_),i

(2.4)

dv z(u) + V(u) + _2 W (u,v,_).
"at- : E 2

In other words, the fast variables have been eliminated (to first

order) from the differential equations. As we shall now show, this

elimination is an averaging procedure; in fact, we can take

2_ 2_

U(u) = (2_) -N f ... / X(u,y) dy1...dy N,
o o

(2.5)

2_ 2_

V(u) = (2_) -N f ... / Y(u,y) dy1...dy N .
o o

Approximate solutions to (2.1) can be constructed by solving the

first order averaged equations,
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du
- _ u(u), u(O) : a',

dt

(2.6) dVdt- z(u) + c V(u), v(O) = b'

a = a' + _ P(a',b'), b = b' + ¢ Q(a',b'),

and substituting the solution into (2.3).

If we differentiate (2.3), then from (2.1) and (2.4), we have

@P
X(u + ¢ P, v + _ Q) = (IM + _ _)(c U + _2WI)

+_aP (z(u) + _ V + _2W2)

z(u + c P) + E Y(u + c P, v + _ Q) = (IN + _v)(Z(U)

+ _ V + _2W2)

+ _(_ U + c2W ).
du I

Expanding in powers of E, we have

BP (u,v) z(u)] + J[**],c X(u,v): _[U(u,v)+

z(u) + _[@@--_(u) P(U,V) + Y(U,V)] z(u) + _[V(u)

+_v(U,V) z(u)]+ c2[**],

where [**] denotes a smooth function of u, v, _ whose explicit

formula is not needed here. Clearly, we must require that
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@P (u,v)z(u)x(u,v)- u(u) = TC

@Z(u) P(u,v) + Y(u,v) - V(u) = _n_v(u'v) z(u)Bu

If the first equation is to have a periodic solution, the

left side must have zero mean. From this requirement, we have the

first equation of (2.5). If, in addition, we know that P(u,v) has

zero mean, then in order to solve for Q(u,v), we must have the

second equation of (2.5).

Let us briefly consider vector equations of the type

(2.8) F(u,v) = z(u)_vU,V)

where the given function F(u,v) has period 2_ in each vn. Since

we seek a periodic solution, we expand both S and F in a Fourier

series,

(2.9)

• where

S = Zj Sj(u) exp i[_j,v], 3--"= (Jl .....JN )'

F = Zj Fj(u) exp i[__j,v],

N

[j,v] = ZI JnVn .

Substituting (2.9) into (2.8) and equating the coefficients of

exp i[j,v], we obtain an infinite set of equations,
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(2.10)

Fo(U)
m

= O,

Fj(u) = i[_,z(u)] Sj(u) .
m m

vectors

If for all u in the domain of interest, and for all integer

j, we have the nonresonance condition,

(2.11) [j,z(u)] _ O,

then we can solve for the Sj(u),

obtain a formal series,

and therefore for S(u,v). We

(2.12) S(u,v) = Zj#O - i[_,z(u)] -I Fj(u) exp i[_,v] .

The denominators [j,z(u)] can become small as j becomes large,

thereby preventing the convergence of the series (2.12). We avoid

this difficult problem (the classical small divisors problem) by

assuming that F(u,v), and therefore, S(u,v) are trigonometric

polynomials. Note that to the particular solution of zero mean (2.12)

we can add an arbitrary solution of the homogeneous equation,

_S
(2.13) 0 = _-(vu,v) z(u) .

Returning to (2.4), we see that if the nonresonance condition

(2.11) is satisfied, and if U and V are chosen by (2.5), then the

transformation (2.3) can be constructed.

It is not always convenient to require that P(u,v) and
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Q(u,v) have zero mean. For example, if the system (2.1) is

Hamiltonian, then the solution of the homogeneous equation (2.13)

can be selected so that the averaged equations (2.6) are Hamiltonian.

John Morrison [ B ] has developed a generalized method of

averaging in which the additive aY%itrary functions play an essential

role. Much of this section is based on his work.

Before discussing the resonance problems (our main topic), we

shall investigate in what sense the solutions to (2.6) determine

approximate solution to the original equations (2.1). For simplicity,

we shall consider scalar equations, i.e., N = M = I.

Let u(t) and v(t) be solutions of the exact equations

(2.4), and u*(t), v*(t) be solutions of the approximate equations

(2.6) with

u(O) : u*(O) : a', v(o) : v*(O) : b'.

Let

(2.14) r = u - u*, s : v - v*,

x* : u* + c P(u*,v*), y* : v* + c Q(u*,v*).

Then

(2.1s)

dr [U(u* + r) U(u*)] + E2W
d_ = e - 1'

ds _ z(u*+ r)- z(u*)+ c [V(u*+ r)- V(u*)]+ c_W .
dt 2
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We assume that in the domain of interest the given functions and

their derivatives can be bounded by the same constant C. Then from

(2.15), we obtain the inequality

t

Jr(t) I < c I
o

CJr(t')ldt' + c2 Ct ,

(2.16)

t

Is(t))_<(I+ c) I
o

CIr(t')l dt' + c2 Ct .

By the generalized Gronwall inequality (p. II of Sanone and

Conti [9]), we have

Ir(t)] < c [exp (c Ct) - l] < c 2 Ct exp (c Ct),

(2.17)

Is(t) I < (I + c)[exp (c Ct) - I] + c 2 Ct - c C(l + c) t212

< c Ct [2 exp (c Ct) + c - t] .

Therefore from (2.3) and (2.14), we have the error estimates,

(2.18)

Ix(t)- x*(t)] _ (l+ c C)lr(t)]+ c C ls(t)l,

Jy(t)- y*(t)I_ (l+ c C)Is(t)l+ c c Ir(t)I.

On an interval 0 < t < T/c, T

slow variable satisfies the inequality,

(2.19) Ix(t) - x*(t) I _ E2t C*,

fixed, the error in the

274



LECTURES ON NONLINEAR RESONANCE

while the error in the fast variable satisfies the weaker inequality,

(2.20) lY(t) - y*(t)I < e t C* ,

where the constant C* depends on the bounds C and T.

In general, the estimates (2.19) and (2.20) are the best

possible. Approximations which are meaningful on an infinite time

interval can be constructed only under the most exceptional circum-

stances.

We now have developed the mathematical machinery for studying

nonlinear resonance.

DEFINITION. If there exists an xo and _k # 0 such that

(2.21) [_k,Z(Xo)] : O,

then the condition for resonance motion has been satisfied. The

deg_e of the resonance is the number of linearly independent integer

vectors k which satisfy (2.21).

A resonant problem can be reduced to a nonresonant problem by

suitably reducing the number of fast variables. Let L denote the

module of integer vectors k_ such that [_k,Z(Xo)] = O, and let

k__I .....k__, 1 < _ < N

be a basis of L. We can construct N - _ linearly independent

vectors

k-_+l ..... -_1'

perpendicular to L. Hence

275



(2.22)
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(2.23)

where the

(2.24)
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A : det Ikl.....kNl # O.

implies that the last

= A-1
qn [k__,y]

N x N matrix K

By constructi on,

[j_',KZ(Xo)] : 0

N -x)

or q = Ky ,

has as its rows the vectors k_n/A .

components of j are zero.

The next step is similar to that used in boundary layer

studies. We set

(2.25) x = xo + e I/2 p .

By virtue of (2.23) and (2.25), the original system of differential

equations (2.1) is equivalent to

(2.26)

dp : ci/2 XiXo + i/2 p,K-lq)dt

dq 1/2 + _ 1/2 -1 -

Kz(x o + p) + e KY(x o p,K q) .
dt

Hence

(2.27)

dp = 1/2 -i i/2,
d_ X(Xo'K q) + c X1(p,q,_ ) ,

1/2
d_qq = KZ(Xo) + _ D(Xo ) p + e y1(p,q,e ) ,
dt
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where D(x o) : K_Z(Xo)/_x , etc.

Since the components of K-I are integers, the system (2.27)

has period 2_ in each qn" Furthermore ql ..... qv as well as

Pl ....PM are slow variables, while qv+l .....qN are fast variables.

Two features of the transformation of (2.1) to (2.27) should

be emphasized. The equations (2.27) are valid in a neighborhood of

Xo; quoting from Brown (p. 8 of [Z]) "resonance is not a single

special case of motion but is a group of cases extending over a finite

range of values of the constants." The second feature is a drop in

the order of the approximation; e _/2 rather than

perturbati on parameter.

We make one last change in notation. Let

]J =

=

(2.28)

(h =

GO =

¢ is the

, D(x O) = ,

(ql ..... qv ) ' X(xo'Kql) = R(3_,4#), etc.

(qv+l ..... qN ) '

([k_v+ 1 ,Z(Xo)] ..... [k_N,Z(Xo)]) ,

Then

(2.29)

dp =
_- _ R(X,@) + p2 Rl(p,X,@,p ) ,

d_ _2
= _ Ap + AI(p,X,@,p) ,

d__ + @p + p2 @1(p,_,@,p )dt = GO P
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Clearly, the first order (in _) averaged equations are (we

forego another change of notation)

dp
: _ RO_X,,

# %

d-_

2_ 2_

RO(_ ) = (2_)-(N-v) / ...J R(X,¢) d@1..d_N_ v
o o

d_ _
(2.30) _]_ - _ AP,

_t = m+P_P "

Note that in both (2.29) and (2.30) A and @ are constant matrices.

Furthermore, we have the nonresonance condition [j,m] = 0 implies

j=0.

Let us consider the first two equations of (2.30).

(2.31)

dp =
_ RO(_) ,

d_
d_ = _ Ap .

If R0(_) vanishes at X = _o' then p = O, _ = Xo is an equilibrium

state of the system (2.31). The stability of the equilibrium state

can be studied with the aid of the linearized equations,

(2.32)

dp

d-t = _ _'_-RO(_ O) (X - _o) ,

d (X Ap_]T - Xo) = p "
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The phenomenon of libration occurs if the equilibrium state is

the center of a family of periodic solutions of (2.31). Just as with

the linearized pendulum equations (I.7), the condition of resonance

does not by itself insure that the motion has any special properties.

For example, if the frequency of the unperturbed problem does not change

with the amplitude, then A is zero, and libration is impossible. Hence

Brown's claim, "the existence of the phenomena of resonance depends on

the existence of this change."

Before returning to the pendulum examples, one final observation

should be made. The first order system (2.32) is equivalent to a second

order system,

(2.33) d2___._X
= _2 ARo(X) -

dt2

If there exists a scalar function Z(X) such that

AR0(X) = - grad Z(X) ,

then

dX A _

_t ^] + U2 Z(X) = const.(2.34) ½ [_-,

is an integral of (2.33).

3. Analysis of the pendulum problems

As our first example, let us take the linearized pendulum

equations (see (I.7) and (l.ll)),
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dr c f(_) sin O_aT= -_

de c f(_) cos e ,(3.]) _ : _+_F

d_ = (_ .
dt

Note that we must have r nonzero.

If

(3.2) m = ks, k an integer,

the condition for linear resonance is satisfied.

Following the procedure of the preceding section, we set

(3.3)

1/2].1 = 5

= (0 - k¢)/(1 + k 2) ,

@ : (ke + 4)/(1 + k 2) ,

r = ro + !JP, ro > O.

Then

and

28O



LECTURES ON NONLINEAR RESONANCE

(3.4)

dp
: - _ f(¢ - k_) sin (_ + k@)

d), = p2f(_ - k_) cos (_ + k_)

m(ro + _p)(l + ks)

_t : + _2k f(_ - k_) cos (_ + k@)

m(ro + pp)(l + ks)

The first order (in _) averaged equations are

(3.5)

27

o

d_
= O,

f(@ - kX) sin (X + k@) d@ ,

= C_ °

For simplicity, let us take f(¢) = cos k_. From

cos (k¢ - k2_) sin (X + k¢) = ½sin (I + k2)_

+ ½sin [2k¢ + (I - kS)X] ,

we have that the equations for the slow variables p and X are

(3.6)

_t = - _sin (I + k_)_ ,

d_
= O.
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Clearly, there are no periodic solutions of (3.6). It is important

to note that the (unstable) equilibrium states are not of physical

signi fi cance.

The second example is the nonlinear pendulum equations (see

(1.2) and (1.24)). In normal form, we have

(3.7)

dr

dt : e f(_) z(r) BF (r,8)[m2 sin r] -I

@F (r,8)[m2 sin r]-IdtdO = z(r) - c z(r) f(_) _-_

where

(3.8)

r 2

z(r) : m(l - T_) + O(r _) ,

x = F(r,O) : r cos 0 + O(r 2) .

It is essential that dz/dr _ O.

We shall not derive (3.8) in detail, but only remark that if

we set

sin x/2

then (see (1.18))

= sin r/2 sin ¢,

[lf ].Iz(r) = m _o (I - sin 2 r/2 sin 2 _)-i/2 dE
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We can now easily derive the first equation of (3.8) by expanding the

integrand in powers on r.

Unfortunately, the transformation from x, _ to r, 0 is

singular at r = O. For simplicity, we want r small, but if the

equations (3.7) are to be meaningful, we must have r nonzero. We

therefore assume that

I

(3.9) 0 < cY < r2 < cY .

The exponents of the bounds on r 2 will be chosen shortly.

We now replace (3.7) by the simplified equations,

d_dr : _ _E f(¢) sin B + 0(c r2)

r3.10), _d0 = m(l _ _)r2 + _E f(_) cos 8 + 0(c r 2)

The difference, and it is essential, between (3.1) and (3.10) is

that the frequence of B depends on r.

The condition for nonlinear resonance is that

(3.11) m(l - ro2/16) = k_ , k an integer, ro # 0 .

Assuming (3.11), we make the substitution (3.3) and obtain
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dp
_- = _ f(@ - kX) sin (X + k@) + O(_r 2) ,

dX
(3.12) d_ =

!JmroP p=mp2 p2 f(¢-kX) sin(X+k¢)
+ + O(p2r2),

8(l+k 2) 16(l+k 2) m(ro+pP)(l+k2)

d_
dt

_ p2 f(@-kX) sin Ix+k@)
_+ k---_[- _roP _6 p2 +

(l+k 2) _(ro+_p)

+ O(_2r _) .

In the

even though ro

require that

dX/dt equation we want the first term to be dominant

is small, i.e., we want pr o >> _2/r o. Therefore, we

(3.13) 0 < 1-y_ r2 _ ,-y/_ , 0 < y < I/2 .

The upper bound permits us to drop the O(pr 2) and O(u2r _) terms

in (3.12). Clearly, from (3.13), we obtain (3.9)

We again set f(_) = cos k_. The first order averaged equa-

tions are

dp =
- _sin (I + k2)X ,

dX
(3.14) _ =

_mroP

8(l+k 2)

_kroP

8(l+k _)
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Let _ = (I + k2)_ + _, T = _t. Then the differential

equations for the slow variables _ and p are equivalent to a

homogeneous pendulum equation,

(3.15) d___+ _2 sin _ = O, _2 = ro/8 .
dt 2

Note that the independent variable is the "slow time," T = _t,

and that the frequency _ depends on the amplitude ro.

The example of the pendulum with oscillating support can be

discussed in more detail (see section Ill of Brown [ 2]), but we have

displayed its most important properties. To summarize: because the

frequency is amplitude dependent, libration can occur at resonance.

The equations describing this libration are equivalent to the

homogeneous pendulum equations, but are valid only over a finite time

interval (of the order of -i/z).

The two pendulum problem gives similar results. Here we set

(3.16)

x = r I cos 81 + O(rlZ), z1(rl) : m(l - r12/16),

y = r 2 cos e + 0(r22), z2(r 2) = _(I - r22/16),
2

fl = - _2(ri cos 01 + r z cos 82),

f2 =-_2(r I cos e I + r cos 8 ).2 2

Then equations (I.6) are approximated by
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d = (r cos 01 + 02 ) sin 01 ,-dt rl - E_ r cos
I 2

(3.17)

d
d-t- r2 : - e_ (r I cos 0

1
+ r 2 cos 02) sin 02 ,

d
d--t01 = m (I - r 2/16) + emi _--(r I cos O I + r2 cos 02 ) cos O, ,

I

d _c_

d-t 02 : _ (1 - r22/16) + _-- (r 1 cos 01 + r 2 cos 02 ) cos 02
2

The condition for nonlinear resonance is

(3.18) klm (1 - rio2/16) : k2_ (I - r2o2/16) .

We shall take k = k = I. The analysis of other resonances is left
I 2

to the reader.

Then with

E1/2,: .  :½(o1-o2). ,:½(o I
(3.19)

: + Pl ' r : + _P2 'rz rlo 2 r2o

we have (retaining the dominant tems)

+ %) ,

d (o r
d_Pl = " _ io sin 2(_+@) + r2o sin 2@ + r2o sin 2_] ,

(3.20)

d
d_ P2 : " _[r2o sin 2(_+@) + rio

d_ _
d_ - _6 [_r2oP2 - mrloPl] '

sin 2@ - rlo sin 2_] ,

d@ = _(1 - r2o2/16) - 1_6 (wrloPl + _r2oP 2)dt
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The averaged equations are

d sin 2_d-t Pl = - 2£9-r2o

(3.21)

d sin 2X
d_ P2 = _-_ rlo

d_
_: i-_6[_r2oP2 - mrloP l] ,

_t : _ (I - r2o2/16 - _(_ (mrloP I + _r2oP 2) .

Once again with _ = 2_ + _, T = ut, we have the homogeneous

pendulum equation describing the resonance phenomena,

(3.22) d2____+_2 sin _ = O,

dt 2
_2 : (_2 + m2) rlor2o/l 6 .

The libration around _ = 0 corresponds to an exact solution

of the original equations (I-6) in the special case of equal lengths,

i.e., _ = w. For then, if x z -y, the two pendulums oscillate out

of phase with exactly the same frequency. The support is motionless.

If the lengths are almost equal, this "locking in" can be approximated

if the initial displacements are chosen so that the resonance

condition (3.18) is satisfied. The unstable equilibrium point, _ = 7,

corresponds to initial conditions x _ y # O. The support must then

oscillate (preservation of linear momentum)--the subsequent motion

of the pendulums is eratic. Finally, we note that the simplicity of

equations (3.15) and (3.22) is due to the small amplitude assumption.
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4. Motion of synchronous satellites.

In this section, we shall study a typical satellite problem in

order to establish the accuracy and the time interval of validity of

the pendulum model which is derived by the method of averaging.

The problem is the determination of the effects of asymmetries in

the Earth's gravitational field on the motion of a synchronous

satellite, i. e. , one whose mean motion is approximately equal

to the rotation rate of the Earth. Because of the near equality

of the two frequencies, the mean motion and the rotation rate,

we have an exan_ple of nonlinear resonance where the effects

of the longitude dependent asymmetries are amplified. This

resonance has been carefully studied by Lo Blitzer [] ], B. Morando

[6] and others. W. Kaula's textbook "Theory of Satellite Geodesy"

[4] contains a clear exposition of the phenomenon.

For simplicity, we shall ignore those terms in the potential

which have little effect on synchronous satellites and write the

potential as

(4.1)

where

V : -@ - V20 - V22,

J2

V20 : -_-_ P2(sin_),

V22 = + _ _ P22(sin_) cos 2(X - X22),

r

: the gravitational constant,

r = the radial distance from the center of mass

measured in Earth radii,

_p = the latitude,
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h : the longitude,

J2 _ 10 -3

J2z "_ i0-6

= i
P2 (sin_) _ (3 sin2 q0-1),

P22 (sin%o) = 3(1 - sin2%O)

Then, according to the standard theory, (Chapter 3 of [4 ]) if

the mean secular rate (short periodic effects are suppressed) of

hA, the astromical latitude, is close to zero then the secular

behavior of X A is governed by the pendulum equation, i.e.,

(4.2) "iA = A(a,e,i) sinZ(h A - h22)

where

h A = _ + M + f_- O

@ : "ft + _o' Greenwich sideral time,

5 e 2 13 e 4
A(a, e,i) : -_- J22 29- (i + cos i) 2 (I - _- + _-_ + ...).

a

Here the variables (a, e, i, m,D , M) are to be interpreted as averaged

or mean elements. It should be noted that the dominate asymmetry,

V20, does not influence the secular behavior of h A . Furthermore,

if

(4.3) k A = _ +_ +k4- 0 _0

and if J2 and J22 are zero, then M - 0 _ 0, i.e., we have near

eq. ality of the m_nn motion of the _atellite and the rotation rate

of the Earth. As usual
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a = the semi-major axis,

e = the eccentricity,

i = the inclination,

= the argument of perigee,

= the longitude of the ascending node,

IV[ = the mean anomaly.

We shall start with the equations of motion and derive averaged

equations corresponding to the pendulum equations (4.Z) for a special

class of orbits, namely, nearly circular orbits in the equatorial plane.

This restriction is convenient because we want to consider the longi-

tude dependent term VZZ as the perturbation and JZZ as the per-

turbation parameter. In other words, the unperturbed potential is

v : _ ÷ --_JZP21sin_l
r

For equatorial orbits, sin%0=-0, and the unperturbed problem is an

integrable central force problem. If we make the additional restriction

that the unperturbed orbit is geometrically circular, then the algebraic

details will not obscure our purpose, the application of the method of

averaging to typical nonlinear resonance problems.

With the center of mass of the Earth as the origin of an inertial

coordinate system, we set x = rcosw, y = r sinw. Then

I r r z
T = _ [_Z + 2.lwZ], the kinetic energy,

(4.4) V - -_ _ JZ - -_ 3JzzC°S Zk, the potential energy,
r Zr 3 r

L = T - V, the Lagrangian,

where (compare with (4.1)) we have set sin%0=-O, kZZ
= O, and k = w - 8.
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The equations of motion are

d 0L 8L

dt Oi" _ =0

d OL OL

dt 8w _ =0

or

(4. 5)

3 J2 _9J22

dZr r(_-_-_Z + _ = -_Z- 7 - r 4
dt Z r

-_ 6 J2z

d--[ _- - r 3

sin2k

cos 2k

We now take w as the independent variable and k, c, u, du/dw

as dependent variables, where

(4.6) k = w - O c = r 2
dw 1 du

, --_-, u =--,r dw =---c

We verify that

(4. 7)

d Z u 3 u 2 2d +U:c c + c
i du dc

c dv¢ dw '

dc -_, 6 JZ2
- u sin Zk,

dw c

dX _3__
-- = i -

dw Z
CU

The equations of motion have equilibrium solutions which

correspond to circular v_u_s-J-:*---=_,,_4-._our__- pcrlods" .....T_j are de-

termined by the transcendental equations obtained by setting the
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derivatives equal to zero in (4.7),

u = 3 u2 2 2_],-_ [l+_- J2 +9Jz2u cos

c

(4.8) 0 = - _ 6u J22 sin 2X,

0:i- 7
2"

cu

Hence,

_T

k = 0, ± _-, ± _ ,

Y
c = --

2 '
u

and u is the positive solution of

4
3

u = -_-[i +_ J2u2+ 9J22u2].

Y

If we were only interested in studying solutions near the equilibrium

solutions, then we would introduce normal coordinates relative to each of

the solutions of sin 2k= 0. However, if h is to be unrestricted, it is

more convenient to set Jz2 = 0 in (4.8) and define our unperturbed orbit

by the equations,

3 2 2

(4.9) uo =-%[l+FJzuo], _ : CoU°
c o

It should be noted that this orbit has nonzero instantaneous eccentricity,

but is geometrically circular.

We now introduce variables PI'Pz'P3 which correspond to deviations

from the resonant amplitudes of section 2. Let
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__ + j/-f222 p 32 2
c c

o

u = u ° + J_z2[p 3 + Pl cos w + P2 sinw],

du 3_22 [d-w = 0 + 0 - Pl sin w + P2 cos w].

Then, using (4. 9), we find that

dP 3
d--_- = J_22B(Pl'P2'P3 'X'w; J2' J2z )

(4.11) dPl dP2 JU_222C(PI' P2' P3' X,w; Jz ' J22 )'d--_- cos w + _ sin w :

dP I dP 2

- _w sin w + _w cos w : _ D(Pl, pz,p3,X, w; J2' J22 )'

dP I

dw - _ {C cos w - D sin w} ,

(4.12)
dP 2

dw - J/_22 {C sin W + D COS W}

where

dP 3

dw - _22 B ,
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Z

B = -C = iZ_-_u sin Zk,

c

J22 D = dZu + u - - u ° +

dw 2 c c o

3 u z 2
=_J2(-_2 --_ u o)

c c
o

+ 9Jzz-_ u z cos 2k
c

1 du dc

c dw dw "

From (4.7) and (4.10), we have

u 2 u z 2 ZUo_ (P3 +-_ --_ o--_ _Uo + _1
c c c

o o

+ J/_ZZ "_ (P3 + 6)2 + JzzP3(P3 + 6)Z} '

c o

I du dc

c dw dw _%2_ + _l_Uo+ _l_ +_1_
c o

(-Pl sin w + P2 cos w) sin 2k } ,

with 6 = Pl cos w + P2 sin w .

Therefore,
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Jv_2Z D

(4.14)

=jz{lU_o+,_Uo-_ip3+_Uo-_/plcosw+p2s,owl
c (2

o o

+ ( J_Z2 -_ + Jz2P3)(P3 + Pl cos w + P2 sinw) Z}
c

0

c
o

+ PZ sin w) 2 cos 2X + 6 J22(-_ + J_22P3)(u o + J_22
c

0

(P3 + Pl cos w + P2 sinw)) (-Pl sin w + P2 cos w) sin 2X

J2 {( u2o + 2 u ° --_) P3 + 2 uo-_z (Pl cos w + P2 sin w)}
c c

o o

+9 JJq_2z--_ UoCOSZ_+0% J_zz+Jz21
c o

After simplification, we have

dP 1

dw - J/_2Z {9 _ U 0 COS 2_ sin W

C
0

2

+ 12 % u ° sin 2X cos w}
c
o

-_,.{{U_o+ __o_} _3s_ w
c

o

+ 2 u ° -_ (Pl cos w + P2 sin w) sinw}
c

o

+ 0 (Jz '/_2Z + J2z )'

(4.15)

-r 2

dw _ {9-%Uo
c

o

cos ZX cos w

(cont'd)
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2

- 12 -_ u °

c o

sin 2% sin w}

+ J2 {(uZo + 7. u ° _ ) P3 cos w

c
o

+ 2 u ° __ (Pl cos w + P2 sin w) cos w}

c o

+ 0 (J2 _J_22 + J22 )'

dP5 - _J_22 ( 12 _ u sin Zk} + 0 (J22).
dw o

c
o

Furthermore, from (4. 7), (4. 9), and (4.10), we have

2

COU 0d--ix: 1_ J_- : 1- --
dt 2 2

cu cu

:l- 1+_ _p3j +-- <P3+
u o

2

c o

: J'/_-22 {{_- - _ ) P3 + _- (Pl COS W + P2 sin W)}
0 0

+ 0 (J22)

Since J2 _ J_-222' and

(4.17) dw _ 2 J/_22dt cu :7 + O( ),

w is a fast variable, and PI'P2'P3' k are slow variables. We now

average with respect to w and use (4.17) to obtain the first order

(in J_222) averaged equations,
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dP 1

dt = - JZ { Y Uo _ P2 } '
C

0

(4.18)

dP 2

dt - Jg { 7 u o -_ pl } ,
C

O

dP3 : Jf_Z2 ( 7 12 -_ u
dt o

C
O

sin Z%} ,

2
C

dX ( 2 o
d-_ = /_-22 { 7 _-- 2_ ) P3 } "

O

The qualitative effect of VZZ, the longitude dependent term in

the potential, is now easy to describe. From (4.18), we have

(4.19)

Pl = s cos _(w - Wo), P2 = s sin _(w - w ),
O

P3

W

=' J/_22 Y 12 _ u o.r sin 2X(w' ) dw',
C

O

where _ : J2 "_ Uo _/C2o ' s, w ° are integration constants, and

% is a solution of the penduium equation,

d2X

dt Z
= G(Y,J2,J22) sin 2 X,

where

G = J22

2

C U °

12 v2 2 (2 - o___ ),
C o

,f

CO = 2

U
o

and Uo is the positive function of _ and J2

From (4.10), we have

determined by (4.9).
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i I
- + J/J-zP_Z[P3 + Pl cos w + PZ sin w].

r r °

Therefore, the radial distance will oscillate about its mean value.

The behavior of %, the longitude of the satellite, is more interesting

since it is strongly influenced by initial conditions. If k is near one

of the unstable equilibrium values (0 or =), or if P3 is large enough,

the satellite will slowly drift around the Earth. On the other hand,

if % is near one of the stable equilibrium values (+= or -=) and if

P3 is small enough, then the satellite will librate about the equili-

brium value. The libriation period can be shown to be proportional

to I/J_2ZZ ; the constant of proportionality is dependent on the initial

conditions.

Finally, we note that the pendulum equations (4.2) and (4. Z0)

are compatible since

2

c o

__ = ao(l _ e z i = ao(l Z 3I_ o )' _- -eo)' _ = v ao
o

and from (4.9) it follows that e ° = 0(J2).

In conclusion, we note that since the pendulum equation (4.20)

was derived by the method of averaging, the error estimates of section

2 are applicable and we can now assert that the pendulum model is

valid over a time interval proportional to i//_22, e.g. , over a libra-

tion period. Statements of this type must be accompanied by the phrase

"if J22 is sufficiently small. " However, numerical tests (which

will be discussed in another report) show that the theory can be used

for synchronous satellites of the Earth.
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